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ABSTRACT
A dual time propagation approach is introduced to describe electron scattering and ionization. The space is divided into two regions,
a central region with a full time-dependent Hamiltonian and an outer region where the kinetic operator and the laser field dominate.
The two regions are connected by a source term. Time-dependent density functional theory calculations of wave packet scattering on
molecules and photoelectron spectrum due to circularly polarized laser are presented to illustrate the efficiency and applicability of the
approach.
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I. INTRODUCTION

Investigation of electron and nuclear dynamics in intense laser
pulses1–22 has been an important research direction in the last
two decades. Computer simulations describing these processes are
very complicated because the laser steers the electrons far away
from the atom and the electrons back-scatter on the ion later.
The description of this process requires extremely large simula-
tion cells in three dimensions. Examples for problems where large
computational cells are required include (i) electron scattering, e.g.,
imaging molecules with laser-induced electron diffraction,23–26

probing electron dynamics with attosecond photoelectron wave
packets,27,28 photon-induced near-field electron microscopy,29 and
(ii) photoelecton spectroscopy, e.g., photoexcitation circular dichro-
ism or19,30,31 photoelectron imaging.32–34

In a previous work, we have used the Volkov states35 as the
basis to solve the time-dependent Schrödinger-equation (TDSE)36,37

for ionization problems. The approach is very simple and efficient,
and one only has to propagate the potential energy matrix elements
and the propagation is a simple multiplication with the time-
dependent Volkov phase. The extension of the approach to large
systems is difficult, however, because one has to calculate the

potential matrix elements at every time step. In the present work, we
bypass this problem by dividing the computational region into two
parts.

In this work, we introduce a dual propagation approach where
a central region will be described by the full time-dependent Hamil-
tonian and the outer region, where the laser field dominates, will
be described by the Hamiltonian comprising the kinetic energy and
the laser potential. The inner and outer regions are coupled by
a source potential, and the electrons can enter or leave the cen-
tral region without reflection. In the outer region, one can use
Volkov states35 to propagate the wave function. This propagation is
numerically inexpensive, and the only limit on the size of the outer
region is the available memory to store the coefficients of the wave
function.

We will implement the dual propagation approach to the
framework of the time-dependent density functional theory
(TDDFT)38 Hamiltonian. The TDDFT Kohn–Sham equations are
often solved by time propagation of the ground state orbitals.
Many approaches have been developed and tested for efficient time
propagation.39–48

Considering the importance of the problem, it is not surpris-
ing that much research has been devoted to developing efficient

J. Chem. Phys. 154, 114110 (2021); doi: 10.1063/5.0045591 154, 114110-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/5.0045591
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0045591
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0045591&domain=pdf&date_stamp=2021-March-16
https://doi.org/10.1063/5.0045591
https://orcid.org/0000-0002-6734-8314
https://orcid.org/0000-0002-8093-1096
mailto:kalman.varga@vanderbilt.edu
https://doi.org/10.1063/5.0045591


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

computational methods for calculations in large simulation cells.
The two most popular approaches are the complex absorbing poten-
tials (CAPs) and the mask method.49,50 In the CAP approach, an
imaginary potential is added near the boundary acting as elec-
tronic density sinks.51,52 The wave function that passes into regions
with a CAP is lost, and the computational domain has to be made
large to accommodate the CAP in realistic calculations. There are
various forms of CAPs that are developed53–55 to minimize the
reflections.

In the mask method or wave function splitting technique, the
system is divided into two regions: (A) a region treated quantum
mechanically, usually via density functional theory (DFT), and (B) a
region far from any nuclei, in which the Coulombic interactions with
the nuclei and other electrons are negligible.10,56–58 This splitting of
domains is advantageous because in the absence of electron–nuclear
and electron–electron interactions, the dynamics of a particle in an
external time-dependent field may be described analytically using
Volkov states35 or free propagators.49,50

The mask function method is similar to the dual propagation in
the sense that both approaches divide the space into inner and outer
regions and uses the Volkov states in the outer part. There are two
problems with the mask method, which restricts its accuracy and
applicability. The first is that the mask function is not perfect and
spurious reflections may appear.58 Second, to take care of the elec-
trons reentering into the inner region, the momentum space wave
functions have to be transformed back to real space. This step can
only be done by discrete Fourier transformations, which introduce
unwanted periodic boundary conditions.58 This is highly undesir-
able because the electron density leaving the cell re-enters on the
opposite side. These effects are especially problematic for stronger
laser pulses. The problems of the mask method are discussed in
details in Appendix B of Ref. 58 and in Ref. 59.

In the dual approach, on the other hand, the source potential
connects the inner and outer wave functions, and there are no artifi-
cial reflections or periodicity at the boundary. The initial inner wave
function is set to zero in the entire inner region at each time when it
approaches the boundary region, and the source potential takes into
account the electrons leaving and re-entering into the box.

We will test the approach calculating photoelectron spectrum
(PES) after ionization and studying electron scattering on molecules.
The photoelectron spectrum has been calculated by many different
methods, including the surface flux method18,60–62 where the time-
dependent outgoing flux is monitored and the mask method.63,64

These approaches have been tested, and their relative merits have
been discussed in Refs. 65 and 66.

As an illustrative application, we will calculate the three-
dimensional photoelectron angular distribution (PAD) of CO and
C3H6O (metyloxirene) molecules in circularly polarized laser field.
These calculations require very large computational cells due to the
complex ionization dynamics. In the calculations, we use a selected
laser-molecule orientation. To compare the simulations with
experiments, one has to repeat the calculation with many differ-
ent orientations as we did in Ref. 67 for hydrocarbon molecules in
linearly polarized light.

Many physical interaction can lead to photoelecton emis-
sion ranging from single-photon ionization by extreme ultraviolet
radiation19–22,68 to above threshold or multiphoton ionization.69–71

Our TDDFT approach explicitly includes only valance electrons, so

we can only describe ionization processes related to valence electron
dynamics.

Recently, density functional theory has been used in scatter-
ing calculations allowing the study of more complex molecules.72–75

In the present paper, the dual propagation allows us to use wave
packet propagation in large simulation boxes, and the scattering
information can be extracted for any desired energy.

II. FORMALISM
A. Dual propagation

To solve the time-dependent Schrödinger-equation

i
∂ψ(r, t)

∂t
= HVψ(r, t), (1)

we write the Hamiltonian as a sum of two parts,

HV = H0 + V , (2)

where H0 is the Volkov Hamiltonian describing the interaction of a
free-electron with a laser field represented by a vector potential A(t)
in velocity gauge,

H0(t) =
1
2
(p + A(t))2, (3)

and V(t) is the time-dependent potential. It is assumed that the
time-dependent potential is only nonzero in a smaller region of the
system.

The wave function will also be divided into two parts,

ψ(r, t) = ψ0(r, t) + ψ1(r, t), (4)

where ψ0 is a solution of the TDSE of H0,

i
∂ψ0(r, t)

∂t
= H0ψ0(r, t). (5)

Plugging ψ(r, t) into Eq. (1), we obtain an equation for
ψ1(r, t) as

i
∂ψ1(r, t)

∂t
= (H0 + V)ψ1(r, t) + S(r, t), (6)

where S is a source term defined as

S(r, t) = V(r, t)ψ0(r, t). (7)

Approaches like this have been often used in the solution of the time
independent Schrödinger-equation (Lipmann–Schwinger method),
and it has also been introduced to enforce outgoing wave boundary
conditions in time-dependent systems.76
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The Volkov states, ϕk(r, t) (see Appendix A), satisfy Eq. (5), so
ψ0 can be expanded as

ψ0(r, t) = ∑
k
ckϕk(r, t). (8)

Note that the ck coefficients are time independent, so the time
development of ψ0(r, t) is described by the analytically known
Volkov basis functions. These Volkov states can be used to solve the
TDSE,36,37 and the time propagation is very efficient using this basis,
but one has to calculate the matrix elements of the potential, which
becomes time consuming for very large systems.

Note that we can rewrite Eq. (6) in an alternative form as

i
∂ψ1(r, t)

∂t
= H0ψ1(r, t) + S̃(r, t), (9)

with a source term defined by

S̃(r, t) = V(r)(ψ0(r, t) + ψ1(r, t)). (10)

In this case, the source term explicitly depends on ψ1(r, t), which
makes the solution more complicated (one has to use a predic-
tor corrector step), but the Hamiltonian acting on ψ1(r, t) is the
Volkov Hamiltonian allowing “analytical” propagation. This alter-
native approach was not implemented numerically in the present
work, but it might be useful in future applications.

In the calculation, the time propagation starts from an initial
wave function ψinitial(r), and at t = 0, we set

ψ(r, 0) = ψ0(r, 0) = ψinitial(r) (11)

and

ψ1(r, 0) = 0. (12)

The initial state, ψinitial(r), is the solution of the time indepen-
dent problem with the vector potential A = 0. Equation (8) defines
ψ0(r, 0) in terms of the analytically known Volkov states, the source
term S(r, t) can be calculated using Eq. (7), and Eq. (6) can be solved
numerically with time propagation. Apart from possible numerical
implementation inaccuracies, this approach has no approximations
so far.

The source term is only nonzero in the region where the poten-
tial, V(r), is nonzero, so we can define a large enough region, C, that
confines the interaction region. Region C will be used as our inner
computational domain. When the time propagation of Eq. (6) starts,
ψ1(r, t) is zero, but due to the source term, it starts to evolve in time
and space. After some time, ψ(r, t) approaches the boundary of C. If
|ψ(r, t)|2 is larger than a preset value, ϵ, at the boundary, we stop the
propagation in the inner region. At this point, say, at t′ = t + ΔT, we
expand the wave function into Volkov basis states as

ψ(r, t′) = ψ0(r, t′) + ψ1(r, t′) = ∑
k
c′kϕk(r, t

′
) (13)

and restart the propagation with

ψ0(r, t′) = ∑
k
c′kϕk(r, t

′
) (14)

and

ψ1(r, t′) = 0. (15)

This step is repeated after every ΔT time interval. Note that Eq. (14)
contains the whole wave function, describing the inner and outer
regions, and nothing is lost or neglected.

The Volkov basis, ϕk(r, t), is defined in a large computational
cell, which includes a sufficiently large part of the asymptotic region
to describe an ionization process. The analytical time propagation
of the wave function using this basis is not a computational burden,
but it still requires a large memory storage for the ck components.
During the time propagation of ψ(r, t), one only needs to calculate
the source term in region C and one only needs ψ0(r, t) in C,

ψC
0 (r, t) = ∑

k
cCkϕ

C
k (r, t), (16)

where ϕCk (r, t) is a Volkov basis defined in region C. In this work,
we have used Volkov states to time propagate ψ0(r, t), but any other
method would work.

The algorithm can be summarized as follows:

1. Initialize ψ0(r, t) and ψC
0 (r, t).

2. Propagate ψ1(r, t) with Eq. (6) from t to t + ΔT.
3. Add ψ0 and ψ1,

ψ(r, t + ΔT) = ψ0(r, t + ΔT) + ψ1(r, t + ΔT).

4. Using Eq. (13), expand ψ into Volkov states ϕk(r, t + ΔT)
and ϕCk (r, t + ΔT) (defining ψ0 and ψC

0 ) and set ψ1 = 0 and
t = t + ΔT.

5. Go to step 2 and repeat the steps.

One can easily generate the expansion in Eq. (13) by fast Fourier
transformation. This is the most expensive part of the calculation for
large systems, but one only needs to do it in every ΔT time interval.
The same expansion in terms of ϕCk (r, t + ΔT) does not cause extra
burden because region C is small.

B. Time propagation with a source term
Using the identity (“exponential time differencing”45,77)

i
∂

∂t
[eiHtψ1(r, t)] = eiHt[−Hψ1(r, t) + i

∂ψ1(r, t)
∂t

], (17)

Eq. (6) can be rewritten as

i
∂

∂t
[eiHtψ1(r, t)] = eiHtS(r, t). (18)
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This equation can be integrated from t to t + Δt,

ψ1(r, t + Δt) = e−iHΔtψ1(r, t) − ie−iHΔt
∫

Δt

0
eiHτS(r, t + τ)dτ. (19)

From here, our goal is to numerically estimate the integral in Eq. (19)
by approximating the source term.

C. Approximations of the source term
We can approximate the integral in Eq. (19) assuming that

source term S(r, t) is constant over the interval t to t = t + Δt,

S(r, τ) = S(r, t), (20)

which yields

ψ1(r, t + Δt) = e−iHΔtψ1(r, t) + M1S(r, t), (21)

where

M1 = H−1
(e−iHΔt

− 1). (22)

This equation has an error of O(Δt2
). Higher order approximations

are also been tested.45,77

To make the calculation practical, one has to represent the
exponential operator. The simplest choice is a first order expansion,

e−iHΔt
= 1 − iΔtH (23)

and then

ψ1(r, t + Δt) = e−iHΔtψ1(r, t) − iΔtS(r, t). (24)

Alternatively, we can use Eq. (9) as a starting point for exponential
time differencing. Repeating the steps above, using the first order
expansion for the exponential, one can get a very simple equation
for the time propagation with the Ŝ source term,

ψ1(r, t + Δt) = e−iH0Δtψ1(r, t) − iΔtS̃(r, t), (25)

because HV is diagonal in momentum space and one can easily do
the e−iH0Δtψ1(r, t) part. The ψ1 dependence of S̃ can be addressed
with a predictor corrector step.

To increase the accuracy, one has to go beyond the first order
approximation of the exponential. As we will implement the calcu-
lations on a real space grid, the simplest approach is a Taylor series
expansion,

e−iHΔt
=

4

∑

k=0

(−iΔt)k

k!
Hk. (26)

Using this expansion, Eq. (21) becomes

ψ1(r, t + Δt) =
4

∑

k=0

(−iΔt)k

k!
Hkψ1(r, t)

+
4

∑

k=1

(−iΔt)k

k!
Hk−1S(r, t). (27)

This propagation scheme is very similar to the conventional
approaches and handles the wave function and the source term on
the same footing. Note that the time step should be sufficiently small
to preserve unitarity, but the approach proved to be stable and reli-
able in previous calculations,47,78,79 and the small time step is also
required by the timescale of dynamics of the system. This is the
representation used in the calculations presented below.

III. RESULTS
We have tested the dual propagation on two different problems:

(i) ionization of molecules and (ii) electron scattering on molecules.
First, we show the results for one-dimensional tests and then for
three-dimensional examples. We list all parameters (lattice spac-
ing, box sizes, and time steps) for each example. These parameters
are given in atomic units unless otherwise noted. The parameters
are chosen after convergence tests, and the presented results are
converged with respect to the time step and grid spacing.

A. One-dimensional test cases
In this section, we will use the Hamiltonian

H =
1
2
(p + A(t))2 + V(x) + iW(x), (28)

where

V(x) =
q

√

x2 + 2
(29)

is a soft Coulomb potential and q is a charge and W(x) is an absorb-
ing potential to avoid spurious reflections from the boundary.80

We adopt the following form for the complex absorbing potential
(CAP):54

W(x) =
̵h2

2 m
(

2π
Δx
)

2
f (y). (30)

Here, Δx = x2 − x1, x1 is the start and x2 is the end of the absorbing
region, c = 2.62 is a numerical constant, and m is the electron’s mass.
Function f is defined as

f (y) =
4
c2 [

1
(1 + y)2 +

1
(1 − y)2 − 2], y =

(x − x1)

Δx
. (31)

This form has been used in many calculations, and one of the advan-
tages of this potential is that it has only one free parameter, the
width of the potential. By increasing the width, the reflection can
be decreased systematically.
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First, we will consider a wave packet scattering on a potential
with q = 1. If the momentum of the wave packet is high, then one
needs very fine grid spacing due to the oscillatory nature of the wave
function. To avoid that, we will separate the oscillatory part,81

ϕ(x, t = 0) = eik0xϕg(x, 0) (32)

with

ϕg(x, 0) = (
2
πa2 )

1/4
e−

x2

a2 , (33)

and momentum of the wave packet p0 = ̵hk0. This factorization is
equivalent with setting A = p0 in Eq. (28) and propagating ϕg(x, 0).

The initial wave packet is centered at x0 = −10 a.u. with width
a = 1 a.u. It is time-propagated up to T = 40 a.u. using the time step
Δt = 0.005 a.u. and ΔT = 20Δt. ΔT has to be smaller than the time
needed for ψ1(r, t) to reach the boundary of the inner region. In the
calculations, we monitor the density at the boundary, and |ψ1(r, t)|2

> 10−10 sets the upper limit on ΔT. After a short test, a suitable ΔT
can be defined. In principle, one can also use variable ΔT adjusted
by the density requirement at the boundary. Calculations were also
repeated with different ΔT to test convergence.

The inner region, C, is from −20 to 20 a.u., and the larger region
is from −250 to 250 a.u. with grid spacing 0.5 a.u. and a 50 a.u. wide
CAP placed at both ends. Once the evolution of the wave packet
is complete, one can transform the wave function from the time
domain into energy space,

Φ(x,E) =
1

2π ∫
Φ(x, t)eiEt/h̵dt, (34)

and the scattering information can be extracted at any desired
energy. In Fig. 1, we show the results of the dual time propagation

FIG. 1. Comparison of scattering probability amplitudes. (a) The probability ampli-
tudes for p0 = 0.5 for dual (solid red line) and full (dashed blue line) propagation.
The wave packet propagated without scattering is shown with the dotted line. (b)
The real part of the dual propagated wave function. (c) and (d) are the same as (a)
and (b) but for p0 = 2.

for two different momenta. We have also propagated the wave func-
tion in the full computational cell (from −250 to 250 a.u.) with the
same time step, grid spacing, and CAP. We refer to this calculation
as “full propagation.” The results of the dual propagation and the full
propagation are in excellent agreement. We have also added the real
part of the wave function calculated by the dual propagation to Fig. 1
to illustrate the oscillation of the scattering function.

The next example is the ionization of the one-dimensional
hydrogen atom. In this case, we use q = −1 with two different laser
pulses. The first one is defined as

A(t) = −∫
t

0
E0 sin(ω(3τ − t′))e−((3τ−t

′)/τ)2

dt′, (35)

with E0 = 0.2, ω = 0.148, and τ = 50. This corresponds to a quiver
distance of xp = 2A0/ωc = 18.3 a.u. and ponderomotive energy of
Up = A2

0/4c
2 = 0.37 a.u. Figure 2 shows the shape of this laser pulse.

For the second pulse, we adapt the laser of Ref. 58. It is a linearly
polarized laser pulse with λ = 532 nm (ω = 0.0856 a.u.) and peak
intensity I = 1.38 × 1013 W/cm2. The laser shape (see Fig. 2) is
defined by

A(t) = A0f (t) cos(ωt),

where f (t) is a trapezoidal envelope function of 14 optical cycles with
two-cycle linear ramps, constant for ten cycles, and A0 = 31.7 a.u.,
xp = 5.4 a.u., Up = 0.0133 a.u.

The results of these calculations are shown in Fig. 2.
Figures 2(a)–2(f) show the time-dependent expectation value,

E(t) = ⟨ψ(x, t)∣H∣ψ(x, t)⟩, (36)

the probability amplitude |ψ(x, t)|2, and the photoelectron spectrum
(PES). The PES is defined as

P(E = p2
/2) = ∣ϕ̃(p)∣2, (37)

where ϕ̃(p) is the Fourier transform of (1 −M(x))ψ(x, t′) at time t′

after the duration of the laser pulse. Here, M(x) is the mask function
(see Appendix B) to cut off the inner part of the wave function and
keep only the asymptotic part that contributes to the photoelectron
emission. Different approaches to calculate the PES have been devel-
oped, compared, and discussed in Refs. 58, 60, and 64. The inner
box is in the region of [−80, 80], and the large box is defined as
[−600, 600], with Δx = 0.4 grid spacing and 100 wide CAP region
(all in a.u.). The time step is Δt = 0.01 a.u. and ΔT = 25Δt. The first
laser was propagated up to T = 300 a.u., the second up to T = 1200
a.u. We also compare the results to mask function calculations. The
mask function starts at the boundary of the inner region to make
the dual and mask method comparable, and the width of the mask
function is 10 a.u. The same mask function is used as in Ref. 58 (see
Appendix B).

The first laser is a short strong few-cycle pulse, and the ener-
gies calculated by the dual and the full propagation are in perfect
agreement. We also show the energy calculated in the inner region
[using ψ1(x, t)]. This energy differs from the energy calculated using
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FIG. 2. Laser shape and energy, probability, and PES for the first [(a), (c), and (e)] and the second [(b), (d), and (f)] laser. The vertical lines in (c) and (d) show the boundary
of the inner box. The PES calculated by the different approaches is shifted to allow better comparison. See the text for further details.

the full wave function because of the contribution from the outer
region. The second laser is a 14 cycle pulse with a smaller amplitude
than that of the first laser. The energy change is smaller but very
oscillatory, following the laser cycles. The agreement of the full and
dual calculation is perfect.

Figures 2(c) and 2(d) compare the square of the wave functions
after the laser pulse. The three approaches, the full, dual, and mask
methods, are in perfect agreement. The slight disagreement close to
the boundary is due to the difference in the application of the CAP
in the mask and dual method and a slight scattering from the mask
region in the case of the mask method. Figures 2(c) and 2(d) show

that the shorter stronger pulse causes more ionization: a larger por-
tion of the probability distribution is outside of the inner box, and
the initial ground state wave function (it is a sharply peaked function
at the origin) is barely noticeable after the pulse. The longer pulse
leads the less ionization (the initial wave function is clearly visible)
but steers the electron distribution farther away from the center.

The PES calculated by the two lasers is shown in Figs. 2(e) and
2(f). The three approaches are again in excellent agreement. The
longer laser with more optical cycles seems to introduce more oscil-
lations, but the general trend of decreasing intensity with increasing
energy is similar.
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FIG. 3. Same as Fig. 2(b), but the amplitude of the laser is multiplied by 5.

These laser parameters are frequently used in test calcu-
lations,58,59 but they are relatively weak. The dual propagation
approach remains accurate for larger laser amplitudes (see Fig. 3),
while the mask method starts to deviate from the full solution due to
reflections from the boundary region.

As the mask region and region C is the same and the outer wave
functions are updated the after ΔT = 25Δt time, the computational
cost of the dual and the mask method is the same. The full propa-
gation is updated at every Δt time steps, so the computational cost
of the full propagation is about 25 times more than that of the dual
propagation.

B. Three-dimensional applications
In this section, we show the application of the approach for

electron scattering on benzene and uracil molecules and the calcula-
tion of the photoelectron angular distribution for an H atom and for
CO and methyloxirane molecules. In the three-dimensional TDDFT
calculations (including many electron orbitals), comparison to the
full propagation is not possible, but we have carefully checked the
convergence with respect to the time steps and grid spacings to test
the approach. In the case of the H atom, there is only one orbital,
and in this case, we will compare the dual propagation and the mask
method.

In these calculations, we use the time-dependent density
functional theory Hamiltonian to describe the electron dynamics.
The TDDFT38 is one of the most promising tools used to study the
interaction of laser pulses with atoms and molecules.78,79,82–85 The
TDDFT has been implemented using different basis sets, e.g., real
space,47,86 Gaussians,87 or plane waves.88,89 The TDDFT has been
proven to produce accurate descriptions of the total and individ-
ual ionization yields for Ne and Ar atoms exposed to strong laser
pulses82 and has also helped to explain the enhanced ionization in
molecules as well as the energetics and dynamics90 of laser-assisted
field evaporation.91 Above threshold ionization and high harmonic
generation have also been a subject of TDDFT studies.59,79,92–94

In TDDFT, the electron dynamics is described by the time-
dependent Kohn–Sham equation (TDKS),

i
∂ψk(r, t)

∂t
= [

1
2
(p + A)2 + VKS]ψk(r, t), (38)

where ψk represent fictitious non-interacting single particle orbitals,
which yield the same density as the true electron wave function.

The Kohn–Sham potential, VKS, may be decomposed as

VKS = VH[ρ](r, t) + VXC[ρ](r, t) + Vion(r, t). (39)

Here, ρ is the electron density, which is defined by a sum over all
occupied orbitals,

ρ(r, t) = ∑
k
Nk∣ψk(r, t)∣

2, (40)

where the coefficient Nk accounts for the number of electrons in
each orbital. VH is the Hartree potential, defined by

VH(r, t) = ∫ dr′
ρ(r′, t)
∣r − r′∣

, (41)

which accounts for the electrostatic Coulomb interactions between
electrons. VXC is the exchange–correlation potential, and V ion is
the external potential due to the ions. The potential of the ions are
represented by employing norm-conserving pseudopotentials of the
form given by Troullier and Martins,95 and the local-density approx-
imation (LDA) approximation is used for the exchange–correlation
potential.96

For the ground state calculations, the molecular geometries
were optimized by DFT calculations using the VKS potential. In the
calculations, the grid spacings are chosen to accurately represent the
pseudopotential part of the VKS potential. In the time-dependent
calculations, the nuclear coordinates were kept fixed.

In the three-dimensional case, the PES is defined as

P(p) = ∑
i
∣ϕ̃i(p)∣2, (42)

where ϕ̃i(p) is the Fourier transform of 1 − M(r)ψ(r, t) after the
laser pulse. The photoelectron angular distribution is given by

P(E = p2
/2, θ) = ∫

2π

0
dϕP(p).

Another experimentally useful quantity is the photoelectron circular
dichroism (PECD) characterizing the asymmetry in the photoelec-
tron angular distribution,

PECD =
P+(θ) − P−(θ)
P+(θ) + P−(θ)

, (43)

where θ is the polar emission angle of the electron with respect
to the light propagation and P+ and P− are the total PAD for
the right and left polarized lasers, respectively. This quantity is
mainly used in experiments measuring PAD of randomly oriented
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FIG. 4. The resulting pattern, enlarged
to see details, of a 38.1 eV electron
scattering on a uracil (a) and ben-
zene (b) molecule in the plane of these
molecules. (c) and (d) are the same as
(a) and (b) but in a plane 27.6 Å behind
the molecules. The dots represent the
atom locations within the molecule.

samples, but its dependence on molecular orientations has also been
studied.31

As a first example, we study electron scattering on benzene and
uracil molecules. The three-dimensional wave packet is defined as

ϕ(r, t = 0) = eik0xϕg(r, 0) (44)

with

ϕg(r, 0) = (
2
πa2 )

3/4
e−

r2

a2 . (45)

The wave packet (a = 1 a.u.) is centered 19 a.u. away from the plane
of the molecule, only the x component of its momentum is nonzero,
and the molecule lies in the yz plane. In this case, only the wave func-
tion of the scattering electron is dual propagated, and the electrons
of the molecule are time-propagated in the conventional way (Tay-
lor propagator). The inner box has 61 × 61 × 61 points, and the large
box has 305 × 305 × 305 points with 0.57 a.u. grid spacing. The time
steps are Δt = 0.02 a.u. and ΔT = 10Δt. Figure 4 shows the scattered
wave packets. Figures 4(a)–4(d) illustrate the interference created
by the electron density distribution of the molecule. The difference
between the uracil and the symmetric benzene clearly appears. Scat-
tering of wave packets created by strong-field tunnel ionization has

recently become an experimental tool,25,27 and the dual propagation
may help to simulate such experiments.

The photoelectron angular distribution of the H atom has been
calculated by several research groups.18,58,60,97 In these calculations,
a laser pulse similar to

A(t) = {
−A0 cos(ωt) sin(ωt/2Nc)

2, if 0 ≤ t ≤ 2πNc/ω,
0, if t > 2πNc/ω,

FIG. 5. Photoelectron angular distribution P(E, θ) (logarithmic scale) of hydrogen.
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FIG. 6. Density in momentum space
states [(a) and (b)] and the PES [(c) and
(d)] for CO where (a) and (c) are the
left polarized laser and (b) and (d) are
the right polarized laser. The sense of
the polarization vector is indicated by the
spiral where the laser propagation vec-
tor lies along the x axis. The molecule
aligned in the z axis with the carbon atom
at the origin.

was used. In our calculation, we set the wavelength to λ = 800 nm (ω
= 0.057 a.u.), and the intensity is I = 2.5 × 1014 W/cm2, with Nc = 5
and A0 = 91.3 a.u. In this example, the inner box is 101 × 101 × 101,
the large box is 505 × 505 × 505, and the grid spacing is 0.4 a.u. The
time steps are Δt = 0.02 a.u. and ΔT = 20Δt (xp = 23.4 a.u., Up = 0.11
a.u.).

The PAD is shown in Fig. 5. The radial distance from the ori-
gin corresponds to the electron energy, and the angle shows the
direction of emission with respect to the laser polarization. The
ring structure, corresponding to the above threshold ionization peak
intensities, is very similar to the results of other calculations.18,58,60,97

Using the same inner and outer regions, we have compared PAD cal-
culated by the dual propagation (Pdual) and the mask method (Pmask).
The difference |(Pdual − Pmask)/Pdual| is less than 10−4 for all energies
and angles shown in Fig. 5.

Finally, we present a study of PES of molecules in circu-
larly polarized light. In this case, all electronic orbitals are time-
propagated. The left (+) and right (−) circularly polarized laser
pulses have the form

E(t) = E0e−(t−tc)/τ )
2

(0, sin(ωt),± cos(ωt)) (46)

FIG. 7. Density in momentum space [(a)
and (b)] and the PES [(c) and (d)] for the
methyloxirane (C3H6O) molecule where
(a) and (c) are the left polarized laser and
(b) and (d) are the right polarized laser.
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FIG. 8. Photoelectron circular dichroism asymmetry for the methyloxirane
molecule.

and A(t) = −dE(t)/dt. The laser parameters are ω = 0.057 a.u.,
E0 = 0.0836 a.u., tc = 413.4 a.u., and τ = tc/2. The inner box is 81
× 81 × 81, the large box is 405 × 405 × 405, and the grid spacing is
0.5 a.u. The time steps are Δt = 0.02 a.u. and ΔT = 20Δt.

Figure 6 compares the PES for a left and right circularly polar-
ized pulse. Figure 6 also shows∑ρi(p), the Fourier transform of the
density, for comparison. The Fourier transform of the orbital density
is defined as

ρi(p) = ∣ψ̃i(p)∣2, (47)

where ψ̃i(p) is the Fourier transform of orbital ψi(r, t) after the laser
pulse. Figures 6(a) and 6(c) show the difference of the left steered
and right steered electron density by the circularly polarized laser.
As shown in Fig. 6, the left and the right polarized PAD are chiral
images of each other in the present geometry.

The results for the C3H6O molecule are shown in Fig. 7. This
calculation is a computationally expensive important test of the

FIG. 9. Real space and momentum
space density distribution of the ground
state orbitals.
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approach. In this case, 11 orbitals are propagated, and each orbital
is represented on 4053 grid points in the outer box. In the inner box,
each orbital is propagated using Eq. (6), and then the total electron
density and potentials are calculated. Despite the size and the more
complex coupled equations, the accuracy of the approach is main-
tained. We have checked different grid spacings and time steps, and
the energy convergence and the final PAD remained the same. The
test calculations have also shown that the present box side is suit-
able for the calculation. Much smaller boxes lead to very different
PADs.

The momentum space densities (see Fig. 7) nicely show the
effect of the left and right polarized lights in this case as well. Due
to the more complex molecular structure, the PES for C3H6O is
very different in the left and right polarization cases. Here, we have
a very complex picture due to the orbitals with different binding
energy and symmetry. Figure 8 shows the PECD as the function
of the polar emission angle for the orientation shown in Fig. 7.
The PECD asymmetry is about 2%, which is somewhat smaller
than the 4% value measured for randomly oriented molecules.71

The calculations have to be repeated and averaged using many

FIG. 10. Density in momentum space [(a) and (b)] and the PES [(c) and (d)] for orbitals 7, 9, 10, and 11 of the methyloxirane molecule where (a) and (c) are the left polarized
laser and (b) and (d) are the right polarized laser. The density and PES were scaled to make the fine structure as visible as possible. This required the use of different scales
for each pair of figures; using one common scale would hinder the details.
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molecular orientations to get closer to the experimentally measured
PECD.

To get further insights into these results, we picture the ground
state orbitals in real and momentum space in Fig. 9. The orbitals
have different symmetries in real space and in momentum space.
The right and left polarized lasers ionize the orbitals to a differ-
ent extent depending on the symmetry and shape and depth of the
time-dependent potential induced by the laser field. Orbitals 7 and 9
ionized most in the right polarized laser, orbitals 10 and 11 ionized
most in the left polarized laser (about 2% ionization in the present
field). The ionization of orbitals 8 and 12 is about three times smaller,
and the ionization of the lower orbitals is negligible. Figure 10 shows
the momentum space density and PES for orbitals 7, 9, 10, and 11
after the duration of the laser. Figure 10 shows high momentum
components of the orbital densities in momentum space. Compar-
ing the momentum space densities before (Fig. 9) and after (Fig. 10)
the laser excitation, one can see that the excited momentum distri-
bution shows little resemblance to the ground state symmetry, and
the right and left circularly polarized laser field strongly perturbed
the original symmetry. Note that we had to use a different color
scheme to amplify the differences, so the low momentum ground
state components do not appear in Fig. 10.

Figure 10 shows that the major contribution to the PES of
methyloxirane (Fig. 7) comes from orbitals 10 and 11 for the
left and from orbitals 7 and 9 for the right polarized case. It is
somewhat unexpected that the highest occupied molecular orbital
(HOMO) is less ionized than the lower ones, but we have found
similar cases previously.84 In Ref. 84, we have studied the align-
ment dependent ionization of acetylene and ethylene by strong laser
pulses, and we have found that the inner orbitals can be ionized
to a larger extent than the HOMO. The ionization of the inner
orbitals is primarily due to their extended weakly bound density
tails.

IV. SUMMARY
We have implemented and tested a dual time propagation

method that allows the simulation of ionization and electron scat-
tering in large computational cells. The approach employs two
wave functions, one in the inner region and the second one that is
defined in a much larger space. The two wave functions are con-
nected by a Schrödinger equation with a source term. Various one-
dimensional ionization and scattering examples were used to test the
accuracy of the approach by comparing a full solution to the dual
propagation.

We have also presented three-dimensional examples. The elec-
tron scattering on molecules using wave packets allows the extrac-
tion of scattering information for a range of energies simultaneously.
In this case, the wave packet has to be propagated in a large space
starting from a position where the wave packet and the molecule
do not interact and ending in a final position where the interac-
tion is zero. During the propagation, the wave packet spreads in
each direction requiring a large simulation box. The wave packet’s
momentum is not constrained to be low, and for high momentum,
we factorize out the oscillatory part that would require prohibitively
small grid spacing. In principle, the approach can also be used for
time-dependent scattering, e.g., when the molecule is subject to laser

excitation and the wave packet is a probe, or the molecule’s excita-
tion is caused by the wave packet itself.

The second set of examples illustrates the application for ion-
ization. Ionization calculations obviously require large simulation
regions, and the study of excitations by circularly polarized lasers
further increases the size of the computational cells. We have stud-
ied the CO and methyloxirane PES in circularly polarized light.
Photoelectron circular dichroism has been experimentally studied
in methyloxirane.71 Photoelectron circular dichroism is normally
studied in the gas phase, so the alignment of the molecule and
the laser is random. In this work, we have calculated the PES for
a given alignment, so direct comparison to experiment is limited,
but measurements for aligned molecules will be possible in the near
future.

The dual propagation greatly reduces the computational cost
of the time-dependent calculations. The computational cost of the
calculation in the inner box is the same as a conventional TDDFT
calculation. The propagation in the large box requires a pair of fast
Fourier transformation for each orbital. This Fourier transforma-
tion needs significant memory and computational time, but it has
to be repeated only at about every 20 time steps. One can possi-
bly make this step more efficient by using a nonuniform Fourier
grid.
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APPENDIX A: VOLKOV STATE
The Volkov Hamiltonian describing the interaction of a free-

electron with a laser field represented in velocity gauge is given by

H0(t) =
1
2
(p + A(t))2. (A1)

In this case, the TDSE admits a solution as Volkov states,

i
∂

∂t
ϕk(r, t) = H0(t)ϕk(r, t), (A2)

where

ϕk(r, t) = eikr−iΦk(t) (A3)

with

Φk(t) = ∫
t

0

1
2
(k −A(τ))2dτ. (A4)

APPENDIX B: MASK METHOD
Within the mask method formalism,58 the system is divided

into two regions. The partitioning ψi(r) = ψA,i(r) + ψB,i(r) is
enforced by
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{
ψA,i(r, t) =M(r)ψi(r, t),
ψB,i(r, t) = [1 −M(r)]ψi(r, t),

(B1)

where M(r) is a mask function that smoothly connects the two
regions. In region (A), the time evolution is performed with the
full Hamiltonian. In region (B), the electron–nuclear and electron–
electron interactions are neglected, and thus, the wave function may
be projected into momentum space via a fast Fourier transform
(FFT) and propagated analytically using the velocity gauge Volkov
expansion. Another advantage of the mask method is that the mask
function does not need to be enforced at every time step, and this
mask time step is usually defined as h = nΔt. The time propagation
for the full wave function proceeds as follows:

1. Propagate the real-space component ψA(r, t) by applying the
time evolution operator (or another method) to time t + h.

2. Propagate the momentum space component ξB(k, t)
= F{ψB(r, t)} by applying the Volkov propagator to
time t + h.

3. Reverse Fourier transform ξB(k, t + h) into ψB(r, t + h) and
convert to the length gauge.

4. Enforce the mask function to mix regions A and B.
5. Convert back to the velocity gauge and Fourier transform

ψB(r, t + h) to momentum space ξB(k, t + h).
6. Repeat steps 1–5 until time tfinal is reached.

In this paper, the mask function is defined to be

M(r) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1, if r < RC,
1 − sin2

(
π
2

r−RC
RA−RC

), if RC ⩽ r ⩽ RA,
0, if r > RA,

(B2)

as used in Ref. 58. Because the real-space wave function in region
B is known at times when the mask function is enforced, a position
based mask can also be used to prevent artificial wrapping of the
wave function into the opposing side of the simulation box.
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