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Abstract— In this work, we defined a simoultaneous policy
blending and system identification approach to create general-
ized policies that are robust to system parameter changes. To
do this, we employ a blending policy whose state space relies
soley on estimated parameters from any system indentification
technique. This blending policy then only must learn how to
utilize it’s subpolicies to handle various parameter changes
instead of learning a complex task for a generalized parameter
set simoultaneously. We demonstrate our schemes ability on a
collaborative robot and human itching task in which the human
contains potential impairments. We then showcase our methods
efficiency with a variety of system identification techniques
resulting in consistent outperformance of standard domain
randomization. The code is available at Luke Bhan’s Github.

I. INTRODUCTION

Over the last few years, there has been significant interest
in developing models that are trained in simulation and then
transferred to the real world [1] [2] [3]. However, despite the
progress in learning techniques, simulated policies still suffer
from long simulation times as they require large amounts
of experience to handle the unknown environements present
in the ’real world’. Additionally, these policies struggle
to generalize to complex situations as they can become
unpredictable when faced with new challenges. As such, re-
searchers have approached this training these policies in two
distinct ways. The first approach relies on system identifica-
tion of parameters as a set of information that can inform the
policy on how to respond in different environments [4]. How-
ever, these policies struggle to generalize and often require
retuning for different situations [4]. The second approach
involves randomizing a series of system parameters during
training such that the policy learns to handle a wide variery of
situations. However, this approach - domain randomization
[5] - requires that the actual parameters be in the set that
is randomized and as such, the robustness of the policy is
directly correlated to the range of randomized parameters.
For complex tasks with many parameters, creating a large
range takes significant training time before a robust policy
can be utilized [6].

However, both these approaches require a single policy
that can 1) solve the task at hand for a single set of
parameters and 2) can then generalize the solution to a wide
set of parameters of which some may create very different
challenges than others. As such these policies are in essence
attempting to solve an overload of challenges and can fail
for large randomization problems. Given this, we attempt
to decouple the process of learning to generalize to system
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parameters and learning policies that can solve the task at
hand efficiently by utilizing a blending technique. With this,
we train single policies that are efficient for a certain set
of distinct parameters and then utilize a blending policy to
identify how best to weight these distinct policies based
on the current parameters of the system. As such, we can
then more efficiently train generalized policies comlpetely
in simulation.

For this paper, our main contributions are:
• Formalizing the idea to decouple the process of learning

a single task and generalizing to a large set of system
parameters using a blending policy technique

• Designing an architecture that integrates a blending
policy which accurately handles the generalization of
its sub-models to system parameters

• Implementing our scheme in a collaborative human and
robotic locomotion task to demonstrate its effectiveness
across different system identification methods

II. RELATED WORK

There have been many approaches to learning policies
based on estmiation of simulation parameters; however, to
the author’s knowledge, none have yet to combine system
identification with a blending approach. For example, [7]
demonstrates the use of simoulatenous learning where they
explore a series of predictive error methods to minimzie the
differences between the observed parameters and estimated
paramters for model predictive control (MPC). Additionally,
domain randomizaiton has been used for a robotic control
similar to ours [8]; however this task does not consider a
collaborative environment nor does it handle multiple faults
introduced by the interacting agents. Furthermore, [9] solves
a challenging Rubik’s cube control task by automatic domain
randomization that slowly increase the difficulty of the task,
but can take siginficant time as it does not consider the
integration of any real-world sampling. Lastly [10] con-
siders an adapative domain randomization strategy where
they attempt to identify domains that can create challenging
enviornments for the policy. This approach is similar to ours,
except that their approach is purely data driven based on the
result of their policy whichrequires significant training due
to potential sample inefficiency while we can utilize prior
domain knowledge to identify environments that have a high
potential of being challenging for the policy.

In addition to the large amount of research tackling poli-
cies designed for efficient sim2real transfer, there have been
a series of recent work that demonstrate the effectiveness of
policy blending. [11] demonstrate the use of policy blending
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for simple tasks such as opening a cap, flipping a breaker,
and turning a dial. However, their policy learns directly from
sensor measurements and does not consider impairments
in the environment. Furthermore, [12] has shown a policy
blending technique between a human and robot policy for
robot-assisted control to accurately assist the human with
various tasks such as fetching a water bottle. However, this
work does not consider training models using modern DRL
techniques. Given these approaches, it seems worthwhile
to combine robust policy blending with modern system
identification as a new approach to generalized assistive
modelling.

III. BACKGROUND

A. Formalizing RL Problems

Consider the problem defined by a Partially Observable
Markov Decision Process (POMDP) M = (S,O,A,R,γ)
where S is the state space, O is the agent’s observation
space, A is the agent’s action space, R : SxA =⇒ R defines
a reward function mapping an action in some state to a
number in R and γ as a discount factor on the reward [13].
In practice, it is difficult to know exactly how the state space
S behaves without consistent exploration and thus simulation
is required given that real-world exploration is generally
either expensive, inefficient, or physically challenging. To
efficiently solve this problem, the goal is to create a policy
π∗ such that we maximize the expected reward function [14]
E [∑∞

t=0 γ trt ] where rt is the immediate reward function at
time t

B. Introduction to Domain Randomization

To effectively identify π∗ in simulation, a set of param-
eters must be defined to create the environment. Domain
randomization attempts to sample a set of some N parameters
which we will denote ξ for which a reasonable range of
potential values is constructed - usually from domain specific
knowledge [2]. In this paper, we will consider domain ran-
domization of the uniform type such that the parameters are
uniformly sampled within a feasible range for that particular
parameter. For example, the weaknes s of a certain human
joint can be sampled uniformly between 0 and 1 where 0
invokes no mobility while 1 is a joint that is at full strength.

C. System Identification Via Parameter Estimation

System identification through parameter estimation is a
well studied subject in which a estimator can consistently re-
cieve samples from a real world environment and generalize
these samples into an estimated true value. In this work, we
utilize the Unscented Kalman Filter (UKF) for our estimator
[15] and make the assumption that our real-world parameters
can be measured with some confidence, but may be cluttered
with noise.

D. Autotuned Search Parameter Model (SPM)

Given that our assumption that an environment’s parame-
ters can be measured does not always hold true, we utilize a
new technique that can estimate the parameters by interacting

with the environment as an agent over measuring them di-
rectly. Recently, Du Et. Al. have formulated a new approach
to system identification where they define a data driven
model that learns a map from (o1:T ,a1:T ,ξguess) =⇒ (0,1)N

such that the current parameters ξguess are greater than,
less than, or equal to the true parameters [16]. This binary
classifier is than iteratively trained concurrently to the policy
such that it slowly converges to the real world parameters by
attempting to sample the real world parameters through its
own policies interaction trajectories. By utilizing this iterative
search, we can then perform a level of system identification
that does not comlpetely rely on domain knowledge for our
experiments.

IV. APPROACH

A. A Blending Model

To create a decoupled policy in which we can solve
individual tasks while maintaining robustness to a variety of
system parameters, we introudce a blending policy in which
we consider soley the N system parameters ξ as its state
space. This policy then only needs to output the weights W
of its sub-policies at each time step to generate the action for
the environment. The sub-policies of this model are trained
on a single set of constant system parameters in which a
unique environment is identified through previous domain
knowledge. We then define the action value of this system
as a = 1

N ∑
N
i=0 wiπi(st) where wi ∈R, N is the number of sub

policies and πi(st) represents the action taken by the sub
policy given a state at time t.

B. Concurrent System Identification

We then combine this blending model with a concurrent
system identification scheme to train a generalized policy that
is robust to different enviormental challenges. To do this, we
let the state space of the blending policy consist of only
the estimated parameters and as such must learn to associate
certain parameters with its sub-policies. In practice, after a
certain number of training steps defined by the researcher, we
utilize our system identification method to reupdate the state
space with a more accurate set of estimate system parameters
and continue training. We emphasize that our approach is
independent of the system identification method chosen and
thus can tailored based on the available domain knowledge
of the environment. This approach can be visualized in ??.

V. EXPERIMENTS

A. Training of Sub-Policies

For demonstrating our model, we attempt to solve a
collaborative itching task using assistive gym [17] where a
robot is assisting an impaired human in itching. We consider
3 impairments similar to [18] for the human:
(a) Involuntary Movement: The first impairment is invol-

untary movement which is handled by adding noise
normally distributed to the joint actions of the human.
For this policy, we sample the noise according to a
normal distribution where each joint in the arm has a
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Fig. 1. Our Proposed model architecture

mean of 0 noise and a standard deviation of 5 degrees
of noise.

(b) Weakened Strength: The second impairment involves
weakness in the ability for the human to move thier
arms which is introduced by lowering the strength factor
in the pid controller of the joints. This value is also
sampled normally with a mean of 0.66 and standard
deviation of 0.2 with 1 representing full strenght and 0
representing immobility.

(c) Limited Range: Lastly, we consider a limitation in the
range of movement for each joint in the arm of the
human. Like above, full joint movement is represented
by 1 and immobile joints are represented by 0. As
such, we sample the limited movement from a normal
distribution with mean 0.75 and standard deviation of
0.1.

Initially, we begin by training a single policy for each
individual impairment on 2 million timesteps (5000 episodes)
using PPO [19] where each network consists of 2 layers of
64 nodes. For all sinlge impairment policies, we define a
state space of 64 joints between the robot and human along
with an action space of 17 joint targets. All policies use the
same reward function as defined in [18]. This reward function
considers a weighted combination of the distance of the robot
arm to the target itch position, the human’s preferences, and
the contact induced with the itch target.

B. Training of Blending Policy

Similar to the sub-policies, we consider the same reward
and utilize a PPO model with 2 layers of 64 nodes each
for training the blending policy. However, for the blending
policy we train for 400k timesteps and the state space only
consists of the system parameters. Unlike the subpolicies,
our blending policy is trained on a human with all three
impairments and as such must consider many more cases
of how the robot needs to act. By training the policy on
a general all three impairments, we allow our blending
policy to become more robust to parameter identification and
improve on the notion that training a single policy to handle

TABLE I
TRAINED POLICIES AND THEIR RESPECTIVE OBSERVATION AND ACTION

SPACES

Policy Observation Space Action Space
Involuntary
Movement

34 human joint values
30 robot joint values

10 human joint values
7 robot joint values

Weakness 34 human joint values
30 robot joint values

10 human joint values
7 robot joint values

Limit Range
of Motion

34 human joint values
30 robot joint values

10 human joint values
7 robot joint values

Blending Policy

Only System Parameters:
1 for Estimate Weakness
1 for Estimated Range Limit
10 for Estimated
Involuntary
Movement Joints

3 weighted values for
blending the policies

TABLE II
TRAINED POLICIES AND THEIR RESPECTIVE OBSERVATION AND ACTION

SPACES

Method Policy Blending State Space

Domain
Randomization No

Trained from Human
and Robot Observation
Space

UKF Yes 12 Parameters Estimated
By UKF Sampling Real World

Autotuned SPM Yes
12 Parameters Estimated by
Mapping Function of Interaction
Between Policy and Real World

Perfect
Parameters Yes

Parameters are Passed as the
State Space at the Start of
Each Epsiode

all three impairments is comlpex and time-consuming due to
sample inefficiency.

C. Training of Domain Randomization

To train the domain randomization model, we train on a
human invoking exhibiting all three impairments. Similar to
above, we use PPO with layers of 64 nodes each. However,
these impairments are now sampled uniformly as such:
(a) Involuntary Movement: The noise for each joints angle

is between [−10,10] degrees.
(b) Weakened Strength: We consider a weakness coefficient

between [0.25,1].
(c) Limited Range: We consider range limitations between

[.5,1] times the original motion.

VI. DISCUSSION AND RESULTS

For our intial sub-policies, we can see that the weakness
and limit based policies can achieve a higher reward con-
sistenly over the tremor policy in Fig. 3. For our blending
policy, we consider the best performing sub-policies and only
train on humans with a variation of all three impairments.
As such, in Fig. 5 can see that the rewards are much lower
than those of the individual policies. Additionally, we notice
that there is a significant advantage to using a clustering
based policy with system identification over general domain
randomization. Furthermore, we can see that the ability
to sample the real-world parameters enhances the policies
overal convergence as the auto tuned policies struggle to
achieve the same success as the UKF based or the baseline



Fig. 2. Example of our robot completing the itching task even when the human is disfunctionally moving thier arm upward
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Fig. 3. Training reward average over 50 episodes for single impairment
policies. The rewards here are averaged over the training of 3 seeds.

(system parameters are pefectly fed everytime). To further
evaluate our policies, we define a testing experiment in which
we undergo 100 episodes of our human exhibiting all three
impairments in which the impairment values are sampled
as above. We still utilize the given system indentification
method for estimating the state space of the blending policy
and Fig. 4 demonstrates a boxplot of each in a. Furthermore,
we consider experiments in which the human only inacts a
single impairment and the results are shown in b, c, and d
of Fig. 4 and Table III respectively.

From the boxplots, it is not obvious to see that the varia-
tions between each group are statstically significant and thus,
from the plots, we cannot fully conclude one policy is signif-
icantly better than another. As such, we perform a Wilcoxon
Signed Rank Test [20] between each pair of mdoels in the
case of the generalized (3 impairment human) experiment.
The results are shown in Table IV where those p-values that
are statistically significant are in green. The only models
that are not significantly different from each are the UKF-
based model and the baseline model fed with the system
parameters. As such, we can determine two important things
about our approach. First, the policy blending approach has a
significant improvement over general domain randomization
in terms of both sample efficiency and performance. Second,
our design can successfully employ various types of system
identification; however, those identification methods may
significantly affect the overall performance of the policy and
should be bsaed on the max amount of domain knowledge
available.
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Fig. 4. Application of the trained policy to a real environment for 100
separate epsiodes. We use the highest reward policy for each situation. a)
Shows the itch force applied when the human has a variation of all three
impairments. b), c), and d) show the force applied when the human has a
single impairment in the form of limited range, weakness, or involuntary
motion respectively.

TABLE III
MEAN AND STDEV OF EACH METHOD GIVEN A SEPECIFIC

IMAPIRMENT

Combined
Impairments

Involuntary
Movement
Impairment

Limited
Range
of Motion

Weakness
in Joints

Method Mean STDEV Mean STDEV Mean STDEV Mean STDEV
Domain
Randomization 1.33 2.18 0.96 1.94 1.56 2.77 1.07 1.90

UKF 8.68 10.58 18.14 14.62 8.05 10.09 18.13 14.49
Autotuned SPM 5.26 7.35 6.34 8.67 5.71 7.35 10.42 10.32
Perfect
Parameters 9.03 10.23 15.02 14.40 11.2 11.71 19.0 13.81

Given this, we must note limitation of our scheme is
that we need to develop the sub-policies; however, these
theoretically provide us stability and robustness when faced
with unknown environments. Additionally, given that these
sub-policies can be reused as they are now decoupled from
the main blending policy, different approaches can quickly
be tested and tuned - a problem limiting current domain
randomization methods.

TABLE IV
WILCOXON PAIRED TEST P-VALUE SCORES

Wilcoxon Test P-Values Domain Randomization UKF Autotuned SPM Perfect Parameters
Domain
Randomization - 1.02E-8 6.52E-6 1.05E-9

UKF 1.02E-8 - 2.67E-4 0.53
Autotuned SPM 6.52E-6 2.67E-4 - 3.02E-4
Perfect
Parameters 1.05E-9 0.53 3.02E-4 -
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VII. CONCLUSION AND FUTURE WORK

In this work, we present a concurrent policy blending and
system identification scheme for learning generalized models
with respect to system parameters. With this scheme, we
demonstrate the ability to solve a collaborative human and
robot task in which the human is impaired with multiple sep-
arate, but impactful conditions. Additionally, we demonstrate
that our policy outperforms the sample inefficient domain
randomization as we can utilize state-of-the-art system iden-
tification methods to significantly outtrain a single general
policy. As such, in this work we provide a framework for
efficiently training generalized policies that are robust to a
ever changing system parameters.
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