
Neural Operators of Backstepping Controller and Observer
Gain Functions for Reaction-Diffusion PDEs

Miroslav Krstic, Luke Bhan, Yuanyuan Shi

University of California, San Diego, USA

Abstract

Unlike ODEs, whose models involve system matrices and whose controllers involve vector or matrix gains, PDE models involve functions
in those roles—functional coefficients, dependent on the spatial variables, and gain functions dependent on space as well. The designs of
gains for controllers and observers for PDEs, such as PDE backstepping, are mappings of system model functions into gain functions.
These infinite-dimensional nonlinear operators are given in an implicit form through PDEs, in spatial variables, which need to be solved
to determine the gain function for each new functional coefficient of the PDE. The need for solving such PDEs can be eliminated by
learning and approximating the said design mapping in the form of a neural operator. Learning the neural operator requires a sufficient
number of prior solutions for the design PDEs, offline, as well as the training of the operator. In recent work, we developed the neural
operators for PDE backstepping designs for first-order hyperbolic PDEs. Here we extend this framework to the more complex class of
parabolic PDEs. The key theoretical question is whether the controllers are still stabilizing, and whether the observers are still convergent,
if they employ the approximate functional gains generated by the neural operator. We provide affirmative answers to these questions,
namely, we prove stability in closed loop under gains produced by neural operators. We illustrate the theoretical results with numerical
tests and publish our code on github. The neural operators are three orders of magnitude faster in generating gain functions than PDE
solvers for such gain functions. This opens up the opportunity for the use of this neural operator methodology in adaptive control and in
gain scheduling control for nonlinear PDEs.

1 Introduction

ML as a tool for learning control methodologies. In the
recent manuscript [10] we introduced a learning-based con-
trol framework which devises a new role for machine learn-
ing (ML): learn an entire control design methodology, in the
form of a mapping from the plant model to the controller
gains, or even to the control inputs.

This framework is neither model-free nor methodology-
agnostic. On the contrary, it is method-specific. For a
particular method (LQR, pole placement, MPC, backstep-
ping, etc.), after a large number of training calculations of
the controller gains on a sample set of plant models, an
ML-approximated mapping of the method is learned. Once
learned as a plant-to-gains mapping, the control design for a
new/next plant (outside of the training set) does not require
another solution of the design equations (Riccati, Bezout,
etc.) but merely entails an “evaluation of the learnt map” to
obtain the control gains.

One would argue that no dire need exists for LQR or other

Email addresses: krstic@ucsd.edu (Miroslav Krstic),
lbhan@ucsd.edu (Luke Bhan), yyshi@eng.ucsd.edu
(Yuanyuan Shi).

linear finite-dimensional designs for such a learning-based
capability, where an entire methodology is “encoded” into a
neural mapping. The cost of the solution of a design problem
(say, a Riccati equation, even of a high dimension) is not
prohibitive, even online with current technology. Indeed, we
are not motivated by design challenges in finite dimensions
but for PDEs.

In PDE control, the design problems are not matrix equa-
tions. They are PDEs themselves (or harder problems, such
as operator Riccati equations). Since the infinite-dimensional
state of a PDE is a function of spatial variables, the con-
troller gain is also a function of spatial variables. Finding
the gain typically entails solving a PDE in space (but not in
time). It is therefore of interest, in PDE control, to have a
capability where producing the control gain functions is just
an evaluation of a neural mapping that has already learned
the design methodology on a large set of previously offline-
solved control design problems for a sample set of PDEs in
a certain class.

Neural operators for approximating mappings of func-
tions into functions. Just as the control designs for linear
finite-dimensional systems are matrix-to-matrix mappings
(A,B into gain K), control designs for PDEs are function-
to-function mappings (spatially-dependent coefficients into

Preprint submitted to Automatica

ar
X

iv
:2

30
3.

10
50

6v
1

 [
ee

ss
.S

Y
]

 1
8

M
ar

 2
02

3

gains). Our inspiration for encoding PDE control method-
ologies into machine learning comes from recent advances
in the mathematics of machine learning. Motivated by the
tasks of finding solution/flow maps (from the initial condi-
tions into future states) for physical PDEs (such as the dif-
ficult Navier-Stokes PDEs), research teams led by George
Karniadakis [55,56], Anima Anandkumar and Andrew Stu-
art [53,54], and George Pappas and Manfred Morari [41,73],
have developed neural approximation methods, termed “neu-
ral operators,” with provable properties for nonlinear opera-
tors acting on functions and producing functions. These ap-
proaches are not simply discretizing PDEs and finding solu-
tion maps to the resulting large ODE solution problems. In
the language of distributed parameter systems, they are not
“early lumping” methods of learning solution maps. They
approximate (non-discretized) function-to-function nonlin-
ear operators and provide guarantees of the accuracy of ap-
proximation in terms of the required sizes of the training
sets and neural networks.

The value of such a capability in PDE control cannot be
understated. With a theoretically rigorous and numerically
powerful capability like this, specific PDE control methods,
for specific classes of PDEs, can be learned once and en-
coded as neural operators, ready to produce the control gain
functions for any new functional coefficients of the same
classes of PDEs.

In a theoretically rigorous field like PDE control, a compu-
tational capability with rigorous approximation guarantees
has a value primarily if it allows the retention of the theo-
retical properties proven for the “exact design”. This is in-
deed what we show in the paper [10] in which we introduce
the framework: approximate neural operator representations
of a particular PDE control method—PDE backstepping—
preserves its stability guarantees in spite of the control gains
not being generated by solving the design PDEs but by the
gains being generated from the learned “neural model” of
PDE backstepping.

Extension of PDE backstepping neural operators from
hyperbolic [10] to parabolic PDEs. Hyperbolic PDEs in-
volve only the first derivatives in space and time. This makes
them (all else being equal) the “simplest” PDE class for con-
trol. Delay systems combine ODEs with delays—the sim-
plest form of a PDE. While the simplest among PDEs, hy-
perbolic PDEs are not necessarily easy to control. They can
be unstable, with many unstable eigenvalues, and only one
input acting at the boundary of a domain. This mix of sim-
plicity within the PDE family, with the non-triviality for
control, makes hyperbolic PDEs the ideal entry point for
any new study in PDE control, including the introduction
of a new framework for learning-based control in our [10].
The framework is depicted in Figure 1. The learning and
implementation portions of the framework in Figure 1 are
depicted in Figure 2.

Control design problems for hyperbolic PDEs are hyperbolic

Process

Derive Backstepping Kernel Condition

Learn Neural Operator

- Choose many functional
coefficients of PDE

- Solve corresponding integral
equations

- Learn the backstepping kernel
neural operator

- Start with PDE model
- Pick target system
- Formulate backstepping transform
- Derive integral equation for kernel

Implement Controller

- Evaluate backstepping kernel for
a given PDE model parameter

- Apply controller to PDE

Fig. 1. An algorithmic representation of our design paradigm of
employing neural operators in boundary control of PDEs. Three
major step clusters are performed: (1) derivation of the integral
equations for the backstepping kernels, performed only once; (2)
learning of the mapping from the plant parameter functions into the
backstepping kernel functions, also performed only once; and (3)
implementation of the controller for specific plant parameters. The
task in the top box has been completed in [46, 77]. In this paper,
the task in the middle box is introduced and stability guarantees
for the task in the bottom box are provided.

PDEs themselves, namely, equations with only first deriva-
tives in multiple spatial variables. Parabolic PDEs, with their
first derivative in time but second derivatives in space, are
the natural next challenge for learning the PDE backstep-
ping methodology using neural operators. This is what we
undertake in this paper. The chief difficulty with learning
backstepping kernel operators for parabolic PDEs is that the
kernels are governed by second-order PDEs, which raises the
difficulty for solving such PDEs and for proving the suffi-
cient smoothness of their solutions so that the neural operator
(NO) approximations have guarantee of sufficient accuracy
for preserving stabilization. At the intuitive level, with more
derivatives, and more boundary conditions, the nonlinear op-
erator from the reaction function to the gain in parabolic
PDEs is a more complex operator than the nonlinear opera-
tor from the recirculation function to the gain in hyperbolic
PDEs. There are hyperbolic cases where the kernel mapping
can be written (though not solved) using the Laplace trans-
form. That is never the case with parabolic PDEs; the design
problem is never of spatial dimension lower than two.

2

Plant PDE

Goursat PDE
Solver (Offline)

DeepONet
Trainer

Learning of DeepONet

DeepONet-approximated
PDE backstepping

Fig. 2. Stages (2) and (3) of the framework in Figure 1. TOP:
The process of learning the PDE backstepping design operator
K : λ 7→ k involves many solutions of a kernel PDE kxx−kyy = λk
in the Goursat form, for different functions λi(x) and then train-
ing of a neural operator ˆK : λ 7→ k̂. BOTTOM: Feedback imple-
mentation of PDE backstepping control with gain kernel k̂(1,x)
generated by the DeepONet ˆK .

We consider parabolic PDE systems of the form

ut(x, t) = uxx(x, t)+λ (x)u(x, t), x ∈ [0,1) (1)
u(0, t) = 0 (2)
u(1, t) =U(t). (3)

Our goal is the design of a PDE backstepping boundary
control

U(t) =
∫ 1

0
k(1,y)u(y, t)dy, (4)

as well as an observer with the (collocated) boundary sensing
of ux(1, t). By “design” we mean to find the gain function
k in the control law (4), namely, to find the output k of the
function-to-function mapping K : λ 7→ k, depicted in Figure
3. This paper’s objective is to learn the design operator K
with a neural operator approximation ˆK (top of Figure 2)
and to employ the resulting approximate gain k̂ in the control
law (bottom of Figure 2).

actuation opposite boundary sensing

u(1, t) =U(t) u(0, t) = 0 ux(0, t) anti-col

u(1, t) =U(t)u(1, t) =U(t)u(1, t) =U(t) u(0, t) = 0u(0, t) = 0u(0, t) = 0 ux(1, t)ux(1, t)ux(1, t) col

u(1, t) =U(t) ux(0, t) = 0 u(0, t) anti-col

u(1, t) =U(t) ux(0, t) = 0 u(1, t) col

ux(1, t) =U(t) u(0, t) = 0 ux(0, t) anti-col

ux(1, t) =U(t) u(0, t) = 0 ux(1, t) col

ux(1, t) =U(t) ux(0, t) = 0 u(0, t) anti-col

ux(1, t) =U(t) ux(0, t) = 0 u(1, t) col
Table 1
Eight possible combinations of boundary actuation, sensing, and
boundary condition at the opposite end of [0,1]. We focus on the
simplest combination—in the second row.

Since parabolic PDEs in one dimension have two boundary
conditions, and also boundary actuation and boundary sens-
ing can be employed at either boundary, a total of sixteen
combinations of boundary actuation, boundary sensing, and
boundary condition on the unactuated boundary are possi-
ble. Taking the symmetry between the boundaries x = 0 and
x = 1 into account, the total number of truly distinct combi-
nations is eight. They are listed in Table 1.

We are able to solve all eight problems but, in this paper,
pursue the simplest of the eight combinations for pedagog-
ical reasons. The case with Dirichlet boundary conditions,
u(0, t) = 0,u(1, t) =U(t) is, notationally, the simplest case.
It allows the reader to most quickly grasp the utility and the
technical steps in employing neural operators in the control
of parabolic PDEs.

All the results in the paper—a full-state controller, an ob-
server, and an output-feedback law (as well as the seven ad-
ditional combinations not pursued in the paper)—can be ex-
tended to the more general class of parabolic PDE systems,

vt(x, t) = ε(x)vxx(x, t)+b(x)vx(x, t)
+λ (x)v(x, t)+g(x)v(0, t)

+
∫ x

0
f (x,y)v(y, t)dy, x ∈ (0,L). (5)

The domain [0,L] is easily normalized to [0,1], the diffu-
sion ε(x) is easily normalized to unity, and the advection
term b(x)vx(x, t) is easily eliminated with a scaling transfor-
mation. We forego pursuing this myriad of alternatives for
pedagogical reasons—they are overwhelming but standard.
Likewise, we forgo the treatment of the terms g(x)v(0, t)+∫ x

0 f (x,y)v(y, t)dy because it adds complications but it is
standard as well.

The parabolic PDE with unity diffusion and with spatially-
varying reaction λ (x) is a perfect introduction to the possi-
bilities that neural operators present for PDE backstepping
control where the computation of the gain kernel k(x,y) for
each new λ (x) can be avoided by developing a neural op-

3

Fig. 3. The PDE backstepping design operator K : λ 7→ k, where λ (x) is the spatially-varying reaction coefficient of the PDE, whereas
k(x,y) is the kernel function of the backstepping transformation, producing the feedback gain function k(1,y) in the feedback law
U(t) =

∫ 1
0 k(1,y)u(y, t)dy.

erator approximation of the functional mapping (nonlinear
operator) K : λ 7→ k, which is depicted in Figure 3.

We opt to present in the paper the results for the combina-
tion in the second row of Table 1 because this combination
allows us to “kill two birds with one stone” in our exposi-
tion. For this particular actuator-sensor combination, which
is collocated (and the simplest of the four collocated combi-
nations), the same kernel is used to obtain the gain functions
for both the controller and the observer. This relieves the
reader of the burden of following multiple approximations
of the kernel, multiple neural operators, multiple training
processes for those operators, and multiple theorems that
guarantee the approximability of those multiple operators.
The concept of encoding the methodologies of controller,
observer, and output-feedback design into a neural operator
is grasped through a single operator K : λ 7→ k. And the
duplication in the exposition is avoided. A reader who pos-
sesses the skills in calculations and the stamina can work
out the remaining combinations in Table 1.

PDE Backstepping. Even though PDE backstepping was
first developed for parabolic systems [77], it is best to begin
its study from the easier, hyperbolic case [46]. Control of hy-
perbolic PDEs has grown into a rich area because, in the hy-
perbolic case, one can stabilize a coupled system with fewer
inputs than PDEs. A pair of coupled hyperbolic PDEs was
stabilized with a single boundary input in [18], an extension
to n+1 hyperbolic PDEs with a single input was introduced
in [28], an extension to n+m PDEs with boundary actua-
tion on m “homodirectional” PDEs in [35,36], an extension
to cascades with ODEs in [29], and an extension to “sand-

wiched” ODE-PDE-ODE systems in [94,95]. Redesigns ro-
bust to delays are provided in [3]. PDE backstepping-based
output-feedback regulation with disturbances is proposed
in [26, 27].

For parabolic PDEs, backstepping for full-state feedback
stabilization was developed in [77] and for observer de-
sign in [78]. A complex extension from linear to nonlin-
ear parabolic PDEs, using infinite Volterra series, was pro-
vided in [88, 89]. Backstepping was combined with dif-
ferential flatness in [61]. The first solutions to the null-
controllability problem for parabolic PDEs were provided,
using backstepping, in [19, 31]. Sampled-data and event-
triggered versions of backstepping for parabolic PDEs ap-
peared in [30, 38, 39, 71]. Work on cascades of parabolic
PDEs with other systems has included heat-ODE cascades
[5, 43], delay-parabolic cascades [44], and ODE-heat-ODE
sandwich systems [93]. A backstepping design for a moving-
boundary PDE-ODE Stefan system was presented in [42].
Coupled parabolic PDEs introduce special challenges and
have been tackled in [4,65,90]. Extensions from multiple 1D
parabolic PDEs to PDEs in 2D and higher dimensions, such
as in the book [60] are arguably even more challenging and
have been pursued for Navier-Stokes and magnetohydrody-
namic systems in [87, 92] on channel domains, as well as
for reaction-diffusion systems on balls of arbitrary dimen-
sions [91]. Adaptive control designs for parabolic PDEs were
introduced in [45,79,80], extended in [40], and extended to
the hyperbolic case in [8]. For coupled hyperbolic PDEs with
unknown parameters, the parabolic designs in [45, 79, 80]
inspired a comprehensive collection of adaptive control de-
signs in the book [1]. Applications of backstepping to PDE
models of traffic are introduced in [96, 97].

4

Advances in learning-based control. What we present
here is one more among many directions in learning-based
control. For the benefit of the reader from PDE control,
we highlight a few results from this vast and growing lit-
erature. Stability of learning-based MPC was established
in [2, 72] and followed, for nonlinear systems, by efforts
on joint learning of the controller and(or) Lyapunov func-
tions [13–15, 21, 22]. In addition, [64, 83] have explored
how learning-based control affects systems with known Lya-
punov functions, [12, 23, 68] studied learning of stability
certificates and stable controllers from data, and [6] devel-
oped a provably stable data-driven algorithm based on sys-
tem measurements and prior system knowledge.

For reinforcement learning (RL) [9], the focus has been
on learning the system dynamics and providing closed-loop
guarantees in finite-time for both linear [16,24,48] and non-
linear systems [7,37,49,76]. For model-free RL, [32,62,66,
100] proved the convergence of policy optimization to the
optimal controller for LTI systems, [63, 67] for LTV sys-
tems, [82] for partially observed linear systems. For a re-
view of policy optimization (PO) methods for LQR, H∞ con-
trol, risk-sensitive control, LQG, and output feedback syn-
thesis, see [34]. For nonlinear systems, [17, 20, 75] investi-
gated PO with stability guarantees from CLFs. In addition
to PO, [11, 51, 84, 85] proved stability and convergence of
actor-critic methods [51, 85] and Q-learning [84]. In CPS,
learning-based control was developed for partially observ-
able systems [57].

Learning-based control in games and for MAS is pursued
in [33, 58, 59, 69, 70, 86, 98, 99]. Convergence is shown to
Nash equilibria in zero-sum linear quadratic games [99],
continuous games [59], Stackelberg games [33], Markov
games [58, 98], and multi-agent learning over networked
systems [69, 70].

We focus on learning-based control for PDE systems. In our
previous work [74], we demonstrate the empirical success
of using NOs for accelerating PDE backstepping observers.
Our recent work [10] represents the first step towards using
NOs for provably bypassing gain computations and directly
learning the controller with closed-loop stabilization guar-
antee, in hyperbolic PDE systems.

Neural operators—a brief summary. Neural operators
are neural network-parameterized maps for learning rela-
tionships between function spaces. They consist of three
components: an encoder, an approximator, and a reconstruc-
tor [50]. The encoder is an interpolation from an infinite-
dimensional function space to a finite-dimensional vector
representation. The approximator aims to mimic the infinite
map using a finite-dimensional representation of both the
domain function space and the target function space. The
reconstructor then transforms the approximation output into
the infinite-dimensional target function space. The imple-
mentation of both the approximator and the reconstructor

is generally coupled and can take many forms. For exam-
ple, the original DeepONet [56] contains a “branch” net that
represents the approximation network and a “trunk” net that
builds a basis for the target function space. The outputs of
the two networks are then taken in linear combination with
each other to form the operator. FNO [54] utilizes the ap-
proximation network in the Fourier domain where the re-
construction is done on a basis of the trigonometric poly-
nomials. LOCA [41] integrates the approximation network
and reconstruction step with a unified attention mechanism.
NOMAD [73] extends the linear reconstructor map in Deep-
ONet to a nonlinear map that is capable of learning on non-
linear submanifolds in function spaces.

With the basic notions and notation for NOs given in Ap-
pendix A, we state next the key technical result that enables
our use of NOs to learn the PDE backstepping kernel map-
pings. The result is quoted in its general/abstract form. It is
specialized to the PDE control setting in our Theorem 4.

Theorem 1 (DeepONet universal approximation theo-
rem [25, Theorem 2.1]). Let X ⊂ Rdx and Y ⊂ Rdy be
compact sets of vectors x ∈ X and y ∈ Y , respectively.
Let U : X → U ⊂ Rdu and V : Y → V ⊂ Rdv be sets of
continuous functions u(x) and v(y), respectively. Let U
be also compact. Assume the operator G : U → V is
continuous. Then, for all ε > 0, there exist m∗, p∗ ∈ N
such that for each m ≥ m∗, p ≥ p∗, there exist θ (k),ϑ (k),
neural networks f N (·;θ (k)),gN (·;ϑ (k)),k = 1, . . . , p,
and x j ∈ X , j = 1, . . . ,m, with corresponding um =

(u(x1),u(x2), · · · ,u(xm))
T, such that

|G (u)(y)−GN(um)(y)|< ε (6)

for all functions u ∈U and all values y ∈ Y of G (u) ∈ V .

In the sequel, we denote the DeepONet neural operator
values GN(um)(y) compactly as Ĝ (u)(y) and the operators
themselves as Ĝ .

Paper outline and contributions. In Section 2 we recap
the basic PDE backstepping approach from [77]. Recalling
in Section 3 the twice continuous differentiability of the
backstepping kernel function we establish the existence of a
neural operator with an arbitrary accuracy for a set of con-
tinuously differentiable reaction coefficients not exceeding
a certain size in the supremum norm. Sections 4 and 5 con-
tain our main results. In Section 4 we prove the stability of
a feedback law employing a DeepONet approximation of
the backstepping gain. In Section 5 we prove the conver-
gence of a backstepping observer that employs a DeepONet
approximation of the observer gain. In Section 6 we com-
bine the DeepONet-based full-state feedback and observer,
to obtain a DeepONet-based output feedback controller with
an actuator-sensor pair collocated at the x = 1 boundary. In
Section 7 we illustrate the theoretical results with numerical
tests.

5

This paper’s contribution relative to the inaugural work
on backstepping for parabolic PDEs [77] is in providing a
methodology for capturing the backstepping design in the
form of a neural operator and avoiding the need for the
solution of kernel PDEs, after the neural operator is once
synthesized. This capability is highly valuable in future
work in the adaptive control of parabolic PDEs and gain-
scheduling for semilinear parabolic PDEs. In relation to our
recent work on neural operator approximated backstepping
control of hyperbolic PDEs, this paper extends this method-
ology, including stability guarantees, to a more difficult
class of PDE systems and kernel operators. Additionally,
compared to [10] where only full-state feedback is consid-
ered, in this paper, we solve problems in observer design
and output-feedback control, with a convergence guarantee
for the DeepONet-approximated backstepping observer.

2 Basic Backstepping Design for Reaction-Diffusion
PDE

We employ the following backstepping transformation,

w(x, t) = u(x, t)−
∫ x

0
k(x,y)u(y, t)dy, (7)

to convert (1), (2), (3) into the target system

wt = wxx (8)
w(0, t) = 0 (9)
w(1, t) = 0 (10)

with the help of feedback (4). We could as well pursue the
target system wt = wxx−cw,c > 0, but we forego this design
flexibility for the sake of simplicity.

To convert (1), (2), (3) into (8), (9), (10), k needs to satisfy

kxx(x,y)− kyy(x,y) = λ (y)k(x,y), ∀(x,y) ∈ T̆ (11)
k(x,0) = 0 (12)

k(x,x) =−1
2

∫ x

0
λ (y)dy (13)

where T̆ = {0 < y≤ x < 1} and T = {0≤ y≤ x≤ 1}.

The following assumption is important.

Assumption 2 λ ∈C1([0,1]).

3 Accuracy of Approximation of Backstepping Kernel
Operator with DeepONet

Theorem 3 (proven in [77,81]) For every λ ∈C1([0,1]), the
PDE system (11), (12), (13) has a unique C2(T) solution
with the property

|k(x,y)| ≤ λ̄e2λ̄x, (14)

for all x ∈ [0,1], where λ̄ = supx∈[0,1] |λ (x)|.

This theorem is proven by representing the PDE system (11),
(12), (13) as an integral equation

G(ξ ,η) =−1
4

∫
ξ

η

λ

(s
2

)
ds

+
1
4

∫
ξ

η

∫
η

0
λ

(
σ − s

2

)
G(σ ,s)dsdσ , (15)

where

ξ = x+ y, η = x− y, x =
ξ +η

2
, y =

ξ −η

2
(16)

G(ξ ,η) = k(x,y) = k
(

ξ +η

2
,

ξ −η

2

)
. (17)

The change of variables (16) converts the domain T for
(x,y) into the larger triangular domain T1 = {0≤ η ≤ ξ ≤
1}∪{1≤ ξ ≤ 2−η ≤ 2} for (ξ ,η). The integral equation
(15) is one of the useful approaches in generating solutions
for k(x,y) for the purpose of training the neural approxima-
tion of the operator λ 7→ k.

Next, denote the set of functions

K =
{

k ∈C2(T)
∣∣k(x,0) = 0,∀x ∈ [0,1]

}
(18)

and let the operator K : C1[0,1]→ K be defined by

k(x,y) =: K (λ)(x,y). (19)

Additionally, let the operator M : C1[0,1]→ K×C1[0,1]×
C0(T) be defined by

(k(x,y),κ1(x),κ2(x,y)) =: M (λ)(x,y), (20)

where

κ1(x) = 2
d
dx

(k(x,x))+λ (x) (21)

κ2(x,y) = kxx(x,y)− kyy(x,y)−λ (y)k(x,y). (22)

Based on Theorem 3, M is a continuous operator. By ap-
plying Theorem 1, we get the following key result for the
approximation of a backstepping kernel by a DeepONet (top
of Figure 2).

Theorem 4 For all Bλ ,Bλ ′ > 0 and ε > 0, there exists a
neural operator M̂ such that, for all (x,y) ∈T ,

∣∣M (λ)(x,y)−M̂ (λ)(x,y)
∣∣< ε (23)

holds for all Lipschitz λ with the properties that ‖λ‖∞ ≤
Bλ ,‖λ ′‖∞ ≤ Bλ ′ , namely, there exists a neural operator ˆK

6

such that ˆK (λ)(x,0)≡ 0 and

∣∣K (λ)(x,y)− ˆK (λ)(x,y)
∣∣

+

∣∣∣∣2
d
dx

(
K (λ)(x,x)− ˆK (λ)(x,x)

)∣∣∣∣
+
∣∣(∂xx−∂yy)

(
K (λ)(x,y)− ˆK (λ)(x,y)

)

−λ (y)
(
K (λ)(x,y)− ˆK (λ)(x,y)

)∣∣< ε. (24)

4 Stabilization under DeepONet Gain Feedback

The following theorem establishes the properties of the feed-
back system at the bottom of Figure 2.

Theorem 5 Let Bλ ,Bλ ′ > 0 be arbitrarily large and con-
sider the system (1), (2), (3) with any λ ∈C1([0,1]) whose
derivative λ ′ is Lipschitz and which satisfies ‖λ‖∞≤Bλ and
‖λ ′‖∞ ≤ Bλ ′ . There exists a sufficiently small ε∗(Bλ ,Bλ ′)>
0 such that the feedback law

U(t) =
∫ 1

0
k̂(1,y)u(y, t)dy, (25)

with all NO gain kernels k̂ = ˆK (λ) of approximation accu-
racy ε ∈ (0,ε∗) in relation to the exact backstepping kernel
k = K (λ) ensures that the closed-loop system satisfies the
exponential stability bound

‖u(t)‖ ≤Me−(t−t0)/2‖u0‖, ∀t ≥ t0, (26)

where

M(ε, λ̄) =
(

1+ λ̄e2λ̄

)(
1+ λ̄e2λ̄ + ε

)
eλ̄e2λ̄+ε . (27)

PROOF. Approximate backstepping transform and per-
turbed target system. Take the backstepping transformation

ŵ(x, t) = u(x, t)−
∫ x

0
k̂(x,y)u(y, t)dy, (28)

where k̂ = ˆK (λ). With the control law (25), the target sys-
tem becomes

ŵt(x, t) = ŵxx(x, t)+δk0(x)u(x, t)

+
∫ x

0
δk1(x,y)u(y, t)dy (29)

ŵ(0, t) = 0 (30)
ŵ(1, t) = 0, (31)

with

δk0(x) = 2
d
dx

(
k̂(x,x)

)
+λ (x)

=−2
d
dx

(
k̃(x,x)

)
(32)

δk1(x,y) = ∂xxk̂(x,y)−∂yyk̂(x,y)−λ (y)k̂(x,y)
=−∂xxk̃(x,y)+∂yyk̃(x,y)+λ (y)k̃(x,y), (33)

where
k̃ = k− k̂ = K (λ)− ˆK (λ). (34)

With (24), we get

‖δk0‖∞ ≤ ε (35)
‖δk1‖∞ ≤ ε. (36)

Inverse approximate backstepping transformation. Since the
state u appears under the integral in the ŵ-system (29), in
the Lyapunov analysis we need the inverse backstepping
transformation

u(x, t) = ŵ(x, t)+
∫ x

0
l̂(x,y)ŵ(y, t)dy. (37)

It is shown in [47] that the direct and inverse backstepping
kernels satisfy in general the relationship

l̂(x,y) = k̂(x,y)+
∫ x

y
k̂(x,ξ)l̂(ξ ,y)dy. (38)

The inverse kernel satisfies the following conservative bound

‖l̂‖∞ ≤ ‖k̂‖∞e‖k̂‖∞ . (39)

Since ‖k− k̂‖∞ < ε , we have that ‖k̂‖∞ ≤ ‖k‖∞ + ε . With
(14) we get

‖k̂‖∞ ≤ k̄+ ε (40)

k̄(λ̄) := λ̄e2λ̄ , (41)

and hence

‖l̂‖∞ ≤
(

λ̄e2λ̄ + ε

)
eλ̄e2λ̄+ε . (42)

Lyapunov analysis. The Lyapunov functional

V =
1
2
‖ŵ‖2 (43)

has a derivative

V̇ =−‖ŵx‖2 +∆0 +∆1, (44)

where

∆0(t) =
∫ 1

0
ŵ(x, t)δk0(x)u(x, t)dx (45)

∆1(t) =
∫ 1

0
ŵ(x, t)

∫ x

0
δk1(x,y)u(y, t)dydx. (46)

7

With several straightforward majorizations, we get

∆0 ≤ ‖δk0‖∞
(
1+‖l̂‖∞

)
‖ŵ‖2

= ‖δk0‖∞
(
1+‖l̂‖∞

)
2V. (47)

and

∆1 =
∫ 1

0
ŵ(x)

∫ y

0
ŵ(y)

∫ x

y
δk(x,σ)l̂(σ ,y)dσdydx

+
∫ 1

0
ŵ(x)

∫ x

0
δ (x,y)ŵ(y)dydx

≤ ‖δk1‖∞
(
1+‖l̂‖∞

)
‖ŵ‖2

= ‖δk1‖∞
(
1+‖l̂‖∞

)
2V. (48)

From (44), (47), (48), (42), and Poincare’s inequality, we
get

V̇ ≤−1
2
(1−δ

∗)V, (49)

where

δ
∗(ε, λ̄) = 2ε

(
1+ λ̄e2λ̄ + ε

)
eλ̄e2λ̄+ε (50)

is an increasing function of ε, λ̄ , with the property that
δ ∗(0, λ̄) = 0. Hence, there exists ε∗(λ̄) such that, for all
ε ∈ [0,ε∗],

V̇ ≤−1
4

V, (51)

namely, V (t) ≤ V0e−(t−t0)/4. From the direct and inverse
backstepping transformations it follows that

1
1+‖l̂‖∞

‖u‖ ≤
√

2V ≤
(
1+‖k̂‖∞

)
‖u‖. (52)

In conclusion,

‖u(t)‖ ≤
(
1+‖l̂‖∞

)(
1+‖k̂‖∞

)
e−(t−t0)/2‖u0‖. (53)

With (40), (41), (42), the proof is completed. 2

5 Observer Design

State estimators (observers) with boundary measure-
ments can be formulated with four measurement choices
on the interval [0,1]: the measured quantities can be
u(0, t),ux(0, t),u(1, t),ux(1, t). That leads to many possible
problem formulations. The possibilities multiply once we
note that, on the opposite boundary from the one at which
measurement is conducted, one can have either a Dirichlet
or Neumann (or even Robin) boundary condition. Our ob-
jective in this paper is not to solve all the possible problems.
We are concerned only with illustrating how NOs can be
combined with PDE observers. Hence, our choice among
the many possibilities is the simplest choice, of the highest
pedagogical value.

Plant PDE

DeepONet-approximated
PDE backstepping observer

Observer PDE

Fig. 4. The PDE backstepping observer (54), (55), (56) uses bound-
ary measurement of the flux ux(1, t). The gain k̂(1, t) is produced
with the DeepONet ˆK .

Since our goals with observers are twofold—to estimate the
unmeasured state but also to use it in output-feedback control
for stabilization—our choice of measurement needs to be
consistent with the actuation choice we have already pursued
in this note, namely, Dirichlet actuation of u(1, t) = U(t).
So, we cannot use u(1, t) for measurement but we can use
u(0, t),ux(0, t),ux(1, t). We make the last among these three
choices. We let the output ux(1, t) be measured.

Our choice of ux(1, t) for measurement, as indicated in the
observer diagram in Figure 4, is motivated by the fact that,
with this measurement, an observer can be built using the
same kernel k(x,y) as for the control law. In other words,
with a single training of a neural operator ˆK , we obtain
gains for both a controller and an observer—we kill two birds
(pedagogically speaking) with one stone. We don’t have to
expend an undue amount of the reader’s effort on the ver-
ification of the conditions of the DeepONet approximation
theorem. It is enough for the reader to see once how this
is done. The rest of the effort is better spent on illustrating
the uses of this approximation capability in observers and
output-feedback controllers.

Theorem 6 Let Bλ ,Bλ ′ > 0 be arbitrarily large and con-
sider the system (1), (2), (3) with any λ ∈C1([0,1]) whose
derivative λ ′ is Lipschitz and which satisfies ‖λ‖∞≤Bλ and
‖λ ′‖∞ ≤ Bλ ′ . There exists a sufficiently small ε∗(Bλ ,Bλ ′)>
0 such that the observer

ût(x, t) = ûxx(x, t)+λ (x)û(x, t)
−k̂(1,x) [ux(1, t)− ûx(1, t)] (54)

û(0, t) = 0 (55)
û(1, t) =U(t), (56)

with all NO gain kernels k̂ = ˆK (λ) of approximation ac-
curacy ε ∈ (0,ε∗) in relation to the exact backstepping ker-
nel k =K (λ) ensure that the observer error system, for all

8

u0, û0 ∈ L2[0,1], satisfies the exponential stability bound

‖u(t)− û(t)‖ ≤Me−(t−t0)/2‖u0− û0‖, ∀t ≥ t0, (57)

where M(ε, λ̄) is defined in (27).

PROOF. We start by postulating a PDE backstepping ob-
server in the form

ût(x, t) = ûxx(x, t)+λ (x)û(x, t)
+p1(x) [ux(1, t)− ûx(1, t)] (58)

û(0, t) = 0 (59)
û(1, t) =U(t). (60)

The observer error ũ(x, t) = u(x, t)− û(x, t) is governed by
the system

ũt(x, t) = ũxx(x, t)+λ (x)ũ(x, t)
−p1(x)ũx(1, t) (61)

ũ(0, t) = 0 (62)
ũ(1, t) = 0. (63)

The backstepping transformation

ũ(x, t) = w̃(x, t)−
∫ 1

x
p(x,y)w̃(y, t)dy (64)

converts (61), (62), (63) into

w̃t(x, t) = w̃xx(x, t) (65)
w̃(0, t) = 0 (66)
w̃(1, t) = 0 (67)

provided p(x,y) satisfies

p(x,y) = k(y,x) (68)

with k that is governed by (11), (12), (13), and with the
observer gain

p1(x) =−k(1,x). (69)

It is crucial to note in (68) that the arguments x and y have
been commuted in k(·, ·). The commuting of the spatial ar-
guments of the backstepping kernel is akin to transposing
matrices in going between designs for controllers and ob-
servers in finite-dimensional LTI systems. The commuted
order of the arguments x and y continues in the rest of the
proof. The observer (58), (59), (60) is next rewritten as

ût(x, t) = ûxx(x, t)+λ (x)û(x, t)
−k(1,x) [ux(1, t)− ûx(1, t)] (70)

û(0, t) = 0 (71)
û(1, t) =U(t) (72)

and the transformation (64) as

ũ(x, t) = w̃(x, t)−
∫ 1

x
k(y,x)w̃(y, t)dy. (73)

Theorem 4 applies to the kernel k(y,x) of the observer back-
stepping transformation and the observer gains−k(1,x). The
observer (70), (71), (72) is henceforth implemented with the
approximate kernel k̂ as in (54), (55), (56) whereas the back-
stepping transformation (73) is applied with k̂ as

ũ(x, t) = ω(x, t)−
∫ 1

x
k̂(y,x)ω(y, t)dy. (74)

The target system under the approximate kernel k̂ becomes

ωt(x, t) = ωxx(x, t)+Ω0(x, t)+Ω1(x, t) (75)
ω(0, t) = 0 (76)
ω(1, t) = 0, (77)

where

Ω0(x, t) = δk0(x)ω(x, t)+
∫ 1

x
l̂(y,x)δk0(y)ω(y, t)dy (78)

Ω1(x, t) =
∫ 1

x
(δk1(y,x)ω(y, t)

+l̂(y,x)
∫ 1

y
δk1(s,y)ω(s, t)ds

)
dy (79)

and δk0,δk1 are defined in (32), (33), with bounds (35), (36).
Note that the arguments in δk1 have been commuted in the
integral in (75). Similar as in the proof of Theorem 5, the
Lyapunov functional

V =
1
2
‖ω‖2 (80)

has a derivative
V̇ ≤−1

4
V, (81)

namely, V (t) ≤ V0e−(t−t0)/4, provided ε ∈ [0,ε∗], with ε∗

obtained from (50). The result (54) follows from (80), (74),
(40), and the inverse backstepping transformation

ω(x, t) = ũ(x, t)+
∫ 1

x
l̂(y,x)ũ(y, t)dy (82)

whose kernel l̂ satisfies the bound (42). 2

6 Collocated Output-Feedback Stabilization

In this section we put together the observer (54), (55), (56),
along with the observer-based controller

U(t) =
∫ 1

0
k̂(1,x)û(x, t)dx (83)

9

to stabilize the system (1), (2), (3) by output feedback.

The backstepping transformations

w̌(x, t) = û(x, t)−
∫ x

0
k̂(x,y)û(y, t)dy (84)

ũ(x, t) = ω(x, t)−
∫ 1

x
k̂(y,x)ω(y, t)dy. (85)

transform the overall system into the cascade

w̌t(x, t) = w̌xx(x, t)+δk0(x)w̌(x, t)dy

+δk0(x,y)
∫ x

0
l̂(x,y)w̌(y, t)dy

+
∫ x

0
δk1(x,y)w̌(y, t)dy

+
∫ x

0
δk1(x,y)

∫ y

0
l̂(y,η)w̌(η , t)dηdy

−
(

k̂(1,x)−
∫ x

0
k̂(x,y)k̂(1,y)dy

)
ωx(1, t)

(86)
w̌(0, t) = 0 (87)
w̌(1, t) = 0 (88)

ωt(x, t) = ωxx(x, t)+δk0(x)ω(x, t)

+
∫ 1

x
l̂(y,x)δk0(y)ω(y, t)dy

+
∫ 1

x
(δk1(y,x)ω(y, t)

+l̂(y,x)
∫ 1

y
δk1(s,y)ω(s, t)ds

)
dy (89)

ω(0, t) = 0 (90)
ω(1, t) = 0. (91)

Both the ω-subsystem (89)–(91), which is autonomous, and
the w̌-subsystem (86)–(88), which is driven by the out-
put ωx(1, t) of the ω-subsystem, are exponentially stable in
L2[0,1] and higher norms for sufficiently small ε . However,
because the trace term ωx(1, t) in the last line of (86) can-
not be easily bounded even by an H2 norm of ω , we do not
pursue a stability analysis of the composite system, i.e., we
leave the “separation principle” unproven for the observer-
based feedback (54), (55), (56), (83) acting on the system
(1), (2), (3). The technical challenge has nothing to do with
the NO implementation of the kernel k̂, as the challenge does
not arise due to the perturbation kernels δk0,δk1. The chal-
lenge is due to the unbounded nature of the output mapping
ω(t) 7→ ωx(1, t), a challenge not encountered in ODEs but
only in PDE control with boundary sensing or actuation.

The result given next, which is of a slightly more compli-
cated form, is provable but we give it without a proof be-
cause the calculations are very, very lengthy and partly dupli-
cate the calculations in the previous sections. The actuation-
sensing setup is from the last row of Table 1, namely, a col-

located Neumann actuation and Dirichlet sensing. Stability
established is in the H1 norm ‖u(t)‖H1 +‖û(t)‖H1 .

Theorem 7 Consider the system

ut(x, t) = uxx(x, t)+λ (x)u(x, t), x ∈ [0,1) (92)
u(0, t) = 0 (93)

ux(1, t) =U(t) (94)

with a measured Dirichlet output u(1, t), along with the col-
located observer-based Neumann-actuated controller

ût(x, t) = ûxx(x, t)+λ (x)û(x, t)
+κ(x) [u(1, t)− û(1, t)] (95)

û(0, t) = 0 (96)
ûx(1, t) =U(t)− k̂(1,1)(u(1, t)− û(1, t)) (97)

U(t) = k̂(1,1)u(1, t)+
∫ 1

0
κ(x)û(x, t)dx, (98)

where the gain function of both the controller and the ob-
server is given by

κ(x) := k̂ξ (ξ ,x)
∣∣
ξ=1 . (99)

For all Bλ ,Bλ ′ > 0 and for all λ ∈C1([0,1]) whose deriva-
tive is Lipschitz and which satisfies ‖λ‖∞ ≤Bλ and ‖λ ′‖∞ ≤
Bλ ′ , there exists a sufficiently small ε∗(Bλ ,Bλ ′) > 0 such
that for all NO gain kernels k̂ = ˆK (λ) of approximation
accuracy ε ∈ (0,ε∗) in relation to the exact backstepping
kernel k = K (λ) there exists sufficiently large M(ε, λ̄)> 0
such that the above observer-based feedback ensures that
the closed-loop system, for all u0, û0 ∈H1[0,1], satisfies the
exponential stability bound

‖u(t)‖H1 +‖û(t)‖H1 ≤Me−(t−t0)/4 (‖u0‖H1 +‖û0‖H1)
(100)

for all t ≥ t0.

The proof is based on the backstepping transformations (84),
(85) into a perturbed version of the target system

w̌t(x, t) = w̌xx(x, t)

+

(
κ(x)−

∫ x

0
κ(y)k̂(x,y)dy

)
ω(1, t) (101)

w̌(0, t) = 0 (102)
w̌(1, t) = 0 (103)

ωt(x, t) = ωxx(x, t) (104)
ω(0, t) = 0 (105)
ω(1, t) = 0. (106)

The perturbation terms are as in (86) and (89), employing
the functions δk0 and δk1 (which are uniformly bounded by
ε). The Lyapunov analysis employs the H1 norms of w̌ and
ω , along with Agmon’s inequality to bound the perturbation
term ω(1, t) in the w̌-system using the norm ‖ωx‖.

10

x

0.0

0.5

1.0

Time

0.0 0.2 0.5 0.8 1.0 1.2 1.5

u(x, t)

0

2

4

6

8

×1014

x

0.0

0.5

1.0

Time

0.0 0.2 0.5 0.8 1.0 1.2 1.5

u(x, t)

0

10

20

30

40

50

Openloop u(x, t) for γ = 5, 8

0.0 0.2 0.4 0.6 0.8 1.0

x

−50

−25

0

25

50

λ
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

x

−50

−25

0

25

50

λ
(x

)

λ (x) = 50cos(γ cos−1(x)) γ = 5,8

Fig. 5. Open-loop instability (top) for the two respective reaction coefficients λ (x) shown on the bottom row.

7 Numerical Results: Full-State Feedback, Observer,
and Output Feedback

In Figure 5, we show that the system is open-loop unstable
for the reaction term λ (x) = 50cos(γ cos−1(x)) for γ = 5,8.
The increased oscillation in larger γ yields a lower rate of
instability as shown on the right. We simulate the PDE and
its control using the finite difference scheme in Appendix B.

In Figure 6, we demonstrate both the analytical and learned
DeepONet kernels for the two γ values corresponding to
Figure 5. To learn the mapping K : λ (x) 7→ k(x,y), we con-
struct a dataset of 900 different λ (x) as the Chebyshev poly-
nomials define above with γ ∼ uniform (4,9). We choose λ

of this form due to the rich set of kernel functions generated
by varying only a single parameter. To effectively utilize the
DeepONet without modifying the grid, we stack λ (x) re-
peatedly ny times over the y axis to make a 2D input to the
network. Then, we capitalize on the 2D mapping by imple-
menting a CNN for the DeepONet branch network. In the

future, one can explore neural operators on irregular girds
along the direction of [52]. For training, the relative L2 error
is 3.5e−2 and the testing error is 3.6e−2. With the learned
neural operator, we achieve speedups on the magnitude of
103 compared to an efficient finite difference implementa-
tion. In Figure 7, we demonstrate closed-loop stability with
the neural operator approximated gain function for the con-
trol feedback law. Additionally, we see the error is largest
at the beginning achieving a maximum in both cases of ap-
proximately 10%.

In Figure 8, we test the observer (55), (55), (56) with
a DeepONet-approximated kernel trained as above us-
ing λ (x) = 20cos(5cos−1(x)) with γ ∼ uniform (4,9).
Additionally, we apply a boundary signal of U(t) =
7sin(16πt)+10cos(2πt) to generate a challenging and rich
PDE motion for estimation. The true system state begins
with initial conditions u(x,0) = 10 while the DeepONet
observer has initial conditions of ûNO(x,0) = 20. Despite
this, the observer approximates the PDE well with a peak

11

x

0.0
0.5

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

k(x,y)

−120

−100

−80

−60

−40

−20

0

x

0.0
0.5

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

k(x,y)

−3

−2

−1

0

1

2

3

k(x, y) for γ = 5, 8

x

0.0
0.5

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

k̂(x,y)

−120

−100

−80

−60

−40

−20

0

x

0.0
0.5

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

k̂(x,y)

−2

0

2

k̂(x,y) for γ = 5, 8

x

0.0
0.5

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

k̂(
x,

y)
−

k(
x,

y)

−1

0

1

2

x

0.0
0.5

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0

k̂(
x,

y)
−

k(
x,

y)

−0.4

−0.2

0.0

0.2

0.4

kernel error k(x,y)− k̂(x,y)

Fig. 6. Examples of the kernel k(x,y) (top row), learned kernel k̂(x,y) (middle row), and the kernel error k(x,y)− k̂(x,y) (bottom row).
The two respective λ (x) values correspond to the same respective values as in Fig 5.

12

x

0.0
0.5

1.0

Time

0.0 0.2 0.5 0.8 1.0 1.2 1.5

uNO(x, t)

−500

−400

−300

−200

−100

0

x

0.0
0.5

1.0

Time

0.0 0.2 0.5 0.8 1.0 1.2 1.5

uNO(x, t)

−10

−5

0

5

10

Closed-loop uNO(x, t) for γ = 5, 8

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time

0.000

0.500

1.000

1.500

2.000

√
∑

nx i=
0(

u[
i]
−

û[
i])

2
∗d

x

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Time

0.000

0.025

0.050

0.075

0.100

0.125

0.150
√

∑
nx i=

0(
u[

i]
−

û[
i])

2
∗d

x

PDE Error (L2 Norm over x)

Fig. 7. For the two respective λ (x) values as in Fig 5, the top row showcases closed-loop solutions with the learned kernel k̂(x,y), whereas
the bottom row shows the closed-loop PDE error between applying the original kernel k(x,y) and the learned kernel k̂(x,y).

error of less than 5% compared to the analytical observer
while maintaining the same 103x speedup over the finite
difference scheme.

8 Conclusions

In this paper, we build on the framework introduced in [10],
and depicted in Figures 1 and 2, and extend the neural
operator-supported PDE backstepping methodology from
the hyperbolic to the harder parabolic case. We limit our-
selves to the reaction-diffusion parabolic class for the clarity
of exposition.

With the foundation laid for hyperbolic and parabolic PDE
backstepping designs, which free the user from having to
solve kernel PDEs in real time and result in a thousandfold
speedup, the road is open to developing this methodology for
two important control domains in which the backstepping
kernels constantly evolve in the course of implementation:

(1) gain scheduling for nonlinear PDEs, where the kernel
depends on the current state of the PDE; and (2) adaptive
control of PDEs whose functional coefficients are unknown,
have to be adaptively estimated online, and the kernel has to
be continuously updated. In both applications, the solving
of the k-PDE online is eliminated with the aid of the pre-
determined neural operator ˆK .

Appendix

A Neural networks notation

An n-layer neural network (NN) f N :Rd1→Rdn is given by

f N (x,θ) := (ln ◦ ln−1 ◦ ...◦ l2 ◦ l1)(x,θ) (A.1)

where layers li start with l0 = x ∈ Rd1 and continue as

li+1(li,θi+1) := σ(Wi+1li +bi+1), i = 1, . . . ,n−1 (A.2)

13

x

0.0

0.5

1.0

Time

0.0 0.5 1.0 1.5 2.0 2.5 3.0

u(x, t)

−15

−10

−5

0

5

10

15

x

0.0

0.5

1.0

Time

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ûNO(x, t)

−15

−10

−5

0

5

10

15

20

u(x, t) and neural operator based observer ûNO(x, t)

Fig. 8. Left: PDE solution with λ (x) = 20cos(5cos−1(x)) and U(t) = 7sin(16πt)+ 10cos(2πt). Right: the observer with the neural
operator-learned kernel. Note the difference between the plant initial condition u(x,0) = 10 and the twice as large initial condition of the
exact and neural operator observers, ûNO(x,0) = û(0,x) = 20. The peak error between the analytical observer (not shown) and the neural
operator observer is around 0.3.

σ is a nonlinear activation function, and weights Wi+1 ∈
Rdi+1×di and biases bi+1 ∈ Rdi+1 are parameters to be
learned, collected into θi ∈ Rdi+1(di+1), and then into
θ = [θ T

1 , . . . ,θ
T
n]

T ∈ R∑n−1
i=1 di+1(di+1). Let ϑ (k),θ (k) ∈

R∑k−1
i=1 dk,(i+1)(dk,i+1) denote a sequence of NN weights.

A neural operator (NO) for approximating a nonlinear op-
erator G : U 7→ V is defined as

GN(um)(y) =
p

∑
k=1

gN (um;ϑ
(k)) f N (y;θ

(k)) (A.3)

where U ,V are function spaces of continuous functions
u∈U ,v∈V . um is the evaluation of function u at points xi =
x1, ...,xm, p is the number of chosen basis components in the
target space, y∈Y is the location of the output function v(y)
evaluations, and gN , f N are NNs termed branch and trunk
networks. Note, gN and f N are not limited to feedforward
NNs (A.1), but can also be of convolutional or recurrent.

B FD Scheme for Goursat-Form Kernel PDE

For the PDE in (1), (2), (3), we utilize the following finite
difference scheme adapted from [81]:

ki+1
j =−ki−1

j + ki
j+1 + ki

j−1 +h2
λ j

ki
j+1 + ki

j−1

2
(B.1)

ki+1
i = ki

i +
h
2

λi (B.2)

ki+1
i+1 = ki

i−
h
4
(λi +λi+1), k j+1

1 = 0 (B.3)

with k j
i = k((i − 1)h,(j − 1)h), i = 2, ...,N, j = 2, ..., i −

1,λi = λ̄ ((i− 1)h),h = 1/N where N is the number of
spatial steps.

References

[1] H. Anfinsen and O. Aamo. Adaptive Control of Hyperbolic PDEs.
Springer, 2019.

[2] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin. Provably safe
and robust learning-based model predictive control. Automatica,
49(5):1216–1226, 2013.

[3] J. Auriol, F. Bribiesca-Argomedo, D. Saba, M. D. Loreto, and
F. Di Meglio. Delay-robust stabilization of a hyperbolic PDE-ODE
system. Automatica, 95:494–502, 2018.

[4] A. Baccoli, A. Pisano, and Y. Orlov. Boundary control of coupled
reaction–diffusion processes with constant parameters. Automatica,
54:80–90, 2015.

[5] N. Bekiaris-Liberis and M. Krstic. Compensating the distributed
effect of diffusion and counter-convection in multi-input and multi-
output lti systems. IEEE Transactions on Automatic Control,
56(3):637–643, 2010.

[6] J. Berberich, C. W. Scherer, and F. Allgöwer. Combining prior
knowledge and data for robust controller design. IEEE Transactions
on Automatic Control, pages 1–16, 2022.

[7] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause.
Safe model-based reinforcement learning with stability guarantees.
Advances in neural information processing systems, 30, 2017.

[8] P. Bernard and M. Krstic. Adaptive output-feedback stabilization
of non-local hyperbolic PDEs. Automatica, 50:2692–2699, 2014.

14

[9] D. P. Bertsekas. Dynamic Programming and Optimal Control,
volume I. Athena Scientific, Belmont, MA, USA, 3rd edition, 2005.

[10] L. Bhan, Y. Shi, and M. Krstic. Neural operators for bypassing gain
and control computations in PDE backstepping. arXiv, submitted
to IEEE Transactions on Automatic Control, 2023.

[11] S. Bhasin, R. Kamalapurkar, M. Johnson, K. Vamvoudakis,
F. Lewis, and W. Dixon. A novel actor-critic-identifier architecture
for approximate optimal control of uncertain nonlinear systems.
Automatica (Journal of IFAC), 49(1):82–92, 2013.

[12] N. Boffi, S. Tu, N. Matni, J.-J. Slotine, and V. Sindhwani. Learning
stability certificates from data. In Conference on Robot Learning,
pages 1341–1350. PMLR, 2021.

[13] Y.-C. Chang, N. Roohi, and S. Gao. Neural lyapunov control.
Advances in neural information processing systems, 32, 2019.

[14] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado.
Learning lyapunov functions for piecewise affine systems with
neural network controllers. arXiv preprint arXiv:2008.06546, 2020.

[15] S. Chen, M. Fazlyab, M. Morari, G. J. Pappas, and V. M. Preciado.
Learning lyapunov functions for hybrid systems. In Proceedings of
the 24th International Conference on Hybrid Systems: Computation
and Control, pages 1–11, 2021.

[16] X. Chen and E. Hazan. Black-box control for linear dynamical
systems. In Conference on Learning Theory, pages 1114–1143.
PMLR, 2021.

[17] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. Advances
in neural information processing systems, 2018.

[18] J. Coron, R. Vazquez, M. Krstic, and G. Bastin. Local exponential
H2 stabilization of a 2× 2 quasilinear hyperbolic system using
backstepping. SIAM Journal on Control and Optimization,
51(3):2005–2035, 2013.

[19] J.-M. Coron and H.-M. Nguyen. Null controllability and finite
time stabilization for the heat equations with variable coefficients
in space in one dimension via backstepping approach. Archive for
Rational Mechanics and Analysis, 225:993–1023, 2017.

[20] W. Cui, Y. Jiang, B. Zhang, and Y. Shi. Structured neural-pi
control for networked systems: Stability and steady-state optimality
guarantees. arXiv preprint arXiv:2206.00261, 2022.

[21] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake. Lyapunov-
stable neural-network control, 2021.

[22] C. Dawson, S. Gao, and C. Fan. Safe control with learned
certificates: A survey of neural lyapunov, barrier, and contraction
methods. arXiv preprint arXiv:2202.11762, 2022.

[23] C. De Persis, M. Rotulo, and P. Tesi. Learning controllers from
data via approximate nonlinearity cancellation. IEEE Transactions
on Automatic Control, pages 1–16, 2023.

[24] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu. Regret bounds for
robust adaptive control of the linear quadratic regulator. Advances
in Neural Information Processing Systems, 31, 2018.

[25] B. Deng, Y. Shin, L. Lu, Z. Zhang, and G. E. Karniadakis.
Convergence rate of deeponets for learning operators arising from
advection-diffusion equations, 2021.

[26] J. Deutscher. A backstepping approach to the output regulation of
boundary controlled parabolic pdes. Automatica, 57:56–64, 2015.

[27] J. Deutscher and J. Gabriel. Minimum time output regulation for
general linear heterodirectional hyperbolic systems. International
Journal of Control, 93:1826–1838, 2018.

[28] F. Di Meglio, R. Vazquez, and M. Krstic. Stabilization of a system
of n+ 1 coupled first-order hyperbolic linear PDEs with a single
boundary input. IEEE Transactions on Automatic Control, 58:3097–
3111, 2013.

[29] F. Di Meglio, F. B. Argomedo, L. Hu, and M. Krstic. Stabilization
of coupled linear heterodirectional hyperbolic pde–ode systems.
Automatica, 87:281–289, 2018.

[30] N. Espitia, I. Karafyllis, and M. Krstic. Event-triggered boundary
control of constant-parameter reaction–diffusion pdes: A small-gain
approach. Automatica, 128:109562, 2021.

[31] N. Espitia, A. Polyakov, D. Efimov, and W. Perruquetti. Boundary
time-varying feedbacks for fixed-time stabilization of constant-
parameter reaction–diffusion systems. Automatica, 103:398–407,
2019.

[32] M. Fazel, R. Ge, S. Kakade, and M. Mesbahi. Global convergence
of policy gradient methods for the linear quadratic regulator. In
International conference on machine learning, pages 1467–1476.
PMLR, 2018.

[33] T. Fiez, B. Chasnov, and L. Ratliff. Implicit learning dynamics
in stackelberg games: Equilibria characterization, convergence
analysis, and empirical study. In International Conference on
Machine Learning, pages 3133–3144. PMLR, 2020.

[34] B. Hu, K. Zhang, N. Li, M. Mesbahi, M. Fazel, and T. Başar.
Towards a theoretical foundation of policy optimization for learning
control policies. arXiv preprint arXiv:2210.04810, 2022.

[35] L. Hu, F. Di Meglio, R. Vazquez, and M. Krstic. Control
of homodirectional and general heterodirectional linear coupled
hyperbolic PDEs. IEEE Transactions on Automatic Control,
61(11):3301–3314, 2016.

[36] L. Hu, R. Vazquez, F. Di Meglio, and M. Krstic. Boundary
exponential stabilization of 1-dimensional inhomogeneous quasi-
linear hyperbolic systems. SIAM J. Control and Optimization,
57(2):963–998, 2019.

[37] S. Kakade, A. Krishnamurthy, K. Lowrey, M. Ohnishi, and W. Sun.
Information theoretic regret bounds for online nonlinear control.
arXiv preprint, 2020.

[38] I. Karafyllis, N. Espitia, and M. Krstic. Event-triggered gain
scheduling of reaction-diffusion pdes. SIAM Journal on Control
and Optimization, 59(3):2047–2067, 2021.

[39] I. Karafyllis and M. Krstic. Sampled-data boundary feedback control
of 1-d parabolic pdes. Automatica, 87:226–237, 2018.

[40] I. Karafyllis, M. Krstic, and K. Chrysafi. Adaptive boundary control
of constant-parameter reaction-diffusion PDEs using regulation-
triggered finite-time identification. Automatica, 103:166–179, 2019.

[41] G. Kissas, J. H. Seidman, L. F. Guilhoto, V. M. Preciado, G. J.
Pappas, and P. Perdikaris. Learning operators with coupled attention.
Journal of Machine Learning Research, 23(215):1–63, 2022.

[42] S. Koga, M. Diagne, and M. Krstic. Control and state estimation
of the one-phase Stefan problem via backstepping design. IEEE
Transactions on Automatic Control, 64(2):510–525, 2019.

[43] M. Krstic. Compensating actuator and sensor dynamics governed
by diffusion pdes. Systems & Control Letters, 58(5):372–377, 2009.

[44] M. Krstic. Control of an unstable reaction-diffusion PDE with long
input delay. Systems & Control Letters, 58:773–782, 2009.

[45] M. Krstic and A. Smyshlyaev. Adaptive boundary control
for unstable parabolic pdes—part i: Lyapunov design. IEEE
Transactions on Automatic Control, 53(7):1575–1591, 2008.

[46] M. Krstic and A. Smyshlyaev. Backstepping boundary control for
first-order hyperbolic PDEs and application to systems with actuator
and sensor delays. Systems & Control Letters, 57(9):750–758, 2008.

[47] M. Krstic and A. Smyshlyaev. Boundary Control of PDEs: A
Course on Backstepping Designs. SIAM, 2008.

[48] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar.
Reinforcement learning with fast stabilization in linear dynamical
systems. In International Conference on Artificial Intelligence and
Statistics, pages 5354–5390. PMLR, 2022.

15

[49] S. Lale, Y. Shi, G. Qu, K. Azizzadenesheli, A. Wierman,
and A. Anandkumar. Kcrl: Krasovskii-constrained reinforcement
learning with guaranteed stability in nonlinear dynamical systems.
arXiv preprint arXiv:2206.01704, 2022.

[50] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates
for DeepONets: a deep learning framework in infinite dimensions.
Transactions of Mathematics and Its Applications, 6(1), 03 2022.
tnac001.

[51] F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis. Reinforcement
learning and feedback control: Using natural decision methods to
design optimal adaptive controllers. IEEE Control Systems Mag.,
32(6):76–105, 2012.

[52] Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier neural
operator with learned deformations for pdes on general geometries,
2022.

[53] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar. Neural operator: Graph
kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020.

[54] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar. Fourier neural operator for
parametric partial differential equations. In International Conference
on Learning Representations, 2021.

[55] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear
operators for identifying differential equations based on the universal
approximation theorem of operators. arXiv:1910.03193, 2019.

[56] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis.
Learning nonlinear operators via deeponet based on the universal
approximation theorem of operators. Nature Machine Intelligence,
3(3):218–229, 2021.

[57] A. A. Malikopoulos. Separation of learning and control for
cyber–physical systems. Automatica, 151:110912, 2023.

[58] W. Mao and T. Başar. Provably efficient reinforcement learning
in decentralized general-sum markov games. Dynamic Games and
Applications, pages 1–22, 2022.

[59] E. Mazumdar, L. J. Ratliff, and S. S. Sastry. On gradient-based
learning in continuous games. SIAM Journal on Mathematics of
Data Science, 2(1):103–131, 2020.

[60] T. Meurer. Control of higher–dimensional PDEs: Flatness and
backstepping designs. Springer Science & Business Media, 2012.

[61] T. Meurer and A. Kugi. Tracking control for boundary controlled
parabolic pdes with varying parameters: Combining backstepping
and differential flatness. Automatica, 45(5):1182–1194, 2009.

[62] H. Mohammadi, A. Zare, M. Soltanolkotabi, and M. R. Jovanović.
Convergence and sample complexity of gradient methods for the
model-free linear–quadratic regulator problem. IEEE Transactions
on Automatic Control, 67(5):2435–2450, 2021.

[63] D. Muthirayan, D. Kalathil, and P. P. Khargonekar. Meta-learning
online control for linear dynamical systems. In 2022 IEEE 61st
Conference on Decision and Control (CDC), pages 1435–1440,
2022.

[64] H. H. Nguyen, T. Zieger, S. C. Wells, A. Nikolakopoulou, R. D.
Braatz, and R. Findeisen. Stability certificates for neural network
learning-based controllers using robust control theory. In 2021
American Control Conference (ACC), pages 3564–3569, 2021.

[65] Y. Orlov, A. Pisano, A. Pilloni, and E. Usai. Output feedback
stabilization of coupled reaction-diffusion processes with constant
parameters. SIAM Journal on Control and Optimization,
55(6):4112–4155, 2017.

[66] B. Pang, T. Bian, and Z.-P. Jiang. Robust policy iteration for
continuous-time linear quadratic regulation. IEEE Transactions on
Automatic Control, 67(1):504–511, 2022.

[67] B. Pang, Z.-P. Jiang, and I. Mareels. Reinforcement learning for
adaptive optimal control of continuous-time linear periodic systems.
Automatica, 118:109035, 2020.

[68] D. Pfrommer, T. T. Zhang, S. Tu, and N. Matni. Tasil: Taylor series
imitation learning. arXiv preprint arXiv:2205.14812, 2022.

[69] J. I. Poveda, M. Krstic, and T. Basar. Fixed-time nash equilibrium
seeking in time-varying networks. IEEE Transactions on Automatic
Control, 2022.

[70] G. Qu, A. Wierman, and N. Li. Scalable reinforcement learning of
localized policies for multi-agent networked systems. In Learning
for Dynamics and Control, pages 256–266. PMLR, 2020.

[71] B. Rathnayake, M. Diagne, N. Espitia, and I. Karafyllis. Observer-
based event-triggered boundary control of a class of reaction–
diffusion pdes. IEEE Transactions on Automatic Control,
67(6):2905–2917, 2021.

[72] U. Rosolia and F. Borrelli. Learning model predictive control for
iterative tasks. a data-driven control framework. IEEE Transactions
on Automatic Control, 63(7):1883–1896, 2017.

[73] J. H. Seidman, G. Kissas, P. Perdikaris, and G. J. Pappas. NOMAD:
Nonlinear manifold decoders for operator learning. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[74] Y. Shi, Z. Li, H. Yu, D. Steeves, A. Anandkumar, and M. Krstic.
Machine learning accelerated pde backstepping observers. In 2022
IEEE 61st Conference on Decision and Control (CDC), pages 5423–
5428, 2022.

[75] Y. Shi, G. Qu, S. Low, A. Anandkumar, and A. Wierman. Stability
constrained reinforcement learning for real-time voltage control.
In 2022 American Control Conference (ACC), pages 2715–2721.
IEEE, 2022.

[76] S. Singh, S. M. Richards, V. Sindhwani, J.-J. E. Slotine, and
M. Pavone. Learning stabilizable nonlinear dynamics with
contraction-based regularization. The International Journal of
Robotics Research, 40(10-11):1123–1150, 2021.

[77] A. Smyshlyaev and M. Krstic. Closed-form boundary state
feedbacks for a class of 1-d partial integro-differential equations.
IEEE Transactions on Automatic Control, 49(12):2185–2202, 2004.

[78] A. Smyshlyaev and M. Krstic. Backstepping observers for a class
of parabolic pdes. Systems & Control Letters, 54(7):613–625, 2005.

[79] A. Smyshlyaev and M. Krstic. Adaptive boundary control
for unstable parabolic pdes—part ii: Estimation-based designs.
Automatica, 43(9):1543–1556, 2007.

[80] A. Smyshlyaev and M. Krstic. Adaptive boundary control for
unstable parabolic pdes—part iii: Output feedback examples with
swapping identifiers. Automatica, 43(9):1557–1564, 2007.

[81] A. Smyshlyaev and M. Krstic. Adaptive Control of Parabolic PDEs.
Princeton University Press, 2010.

[82] Y. Tang, Y. Zheng, and N. Li. Analysis of the optimization landscape
of linear quadratic gaussian (lqg) control. In Learning for Dynamics
and Control, pages 599–610. PMLR, 2021.

[83] A. J. Taylor, V. D. Dorobantu, M. Krishnamoorthy, H. M. Le,
Y. Yue, and A. D. Ames. A control lyapunov perspective on
episodic learning via projection to state stability. In 2019 IEEE
58th Conference on Decision and Control (CDC), pages 1448–1455.
IEEE, 2019.

[84] K. G. Vamvoudakis. Q-learning for continuous-time linear systems:
A model-free infinite horizon optimal control approach. Systems &
Control Letters, 100:14–20, 2017.

[85] K. G. Vamvoudakis and F. L. Lewis. Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem.
Automatica, 46(5):878–888, 2010.

16

[86] K. G. Vamvoudakis, H. Modares, B. Kiumarsi, and F. L. Lewis.
Game theory-based control system algorithms with real-time
reinforcement learning: How to solve multiplayer games online.
IEEE Control Systems Magazine, 37(1):33–52, 2017.

[87] R. Vazquez and M. Krstic. A closed-form feedback controller for
stabilization of the linearized 2-d navier–stokes poiseuille system.
IEEE Transactions on Automatic Control, 52(12):2298–2312, 2007.

[88] R. Vazquez and M. Krstic. Control of 1-d parabolic pdes with
volterra nonlinearities, part i: Design. Automatica, 44(11):2778–
2790, 2008.

[89] R. Vazquez and M. Krstic. Control of 1d parabolic pdes with
volterra nonlinearities, part ii: analysis. Automatica, 44(11):2791–
2803, 2008.

[90] R. Vazquez and M. Krstic. Boundary control of coupled reaction-
advection-diffusion systems with spatially-varying coefficients.
IEEE Transactions on Automatic Control, 62(4):2026–2033, 2016.

[91] R. Vazquez and M. Krstic. Explicit output-feedback boundary
control of reaction-diffusion pdes on arbitrary-dimensional balls.
ESAIM: Control, Optimisation and Calculus of Variations,
22(4):1078–1096, 2016.

[92] R. Vazquez, E. Schuster, and M. Krstic. Magnetohydrodynamic
state estimation with boundary sensors. Automatica, 44(10):2517–
2527, 2008.

[93] J. Wang and M. Krstic. Output feedback boundary control of a
heat pde sandwiched between two odes. IEEE Transactions on
Automatic Control, 64(11):4653–4660, 2019.

[94] J. Wang and M. Krstic. Delay-compensated control of sandwiched
ode–pde–ode hyperbolic systems for oil drilling and disaster relief.
Automatica, 120:109131, 2020.

[95] J. Wang and M. Krstic. Event-triggered output-feedback
backstepping control of sandwich hyperbolic pde systems. IEEE
Transactions on Automatic Control, 67(1):220–235, 2022.

[96] H. Yu and M. Krstic. Traffic congestion control for Aw-Rascle-
Zhang model. Automatica, 100:38–51, 2019.

[97] H. Yu and M. Krstic. Traffic Congestion Control by PDE
Backstepping. Springer, 2022.

[98] K. Zhang, S. Kakade, T. Basar, and L. Yang. Model-based multi-
agent rl in zero-sum markov games with near-optimal sample
complexity. Advances in Neural Information Processing Systems,
33:1166–1178, 2020.

[99] K. Zhang, Z. Yang, and T. Basar. Policy optimization provably
converges to nash equilibria in zero-sum linear quadratic games.
Advances in Neural Information Processing Systems, 32, 2019.

[100] F. Zhao, K. You, and T. Başar. Global convergence of policy gradient
primal-dual methods for risk-constrained lqrs. IEEE Transactions
on Automatic Control, 2023.

17

	1 Introduction
	2 Basic Backstepping Design for Reaction-Diffusion PDE
	3 Accuracy of Approximation of Backstepping Kernel Operator with DeepONet
	4 Stabilization under DeepONet Gain Feedback
	5 Observer Design
	6 Collocated Output-Feedback Stabilization
	7 Numerical Results: Full-State Feedback, Observer, and Output Feedback
	8 Conclusions
	A Neural networks notation
	B FD Scheme for Goursat-Form Kernel PDE
	References

