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Abstract— Fault tolerant control (FTC) focuses on developing
algorithms to accommodate the impact of system faults while
allowing the system to continuously operate in a degraded
manner. Additionally, data-driven methods like reinforcement
learning (RL) have shown excellent performance for complex
continuous control tasks. However, faults affect the system
dynamics which disrupt optimal policy guarantees as the
Markov Property cannot be satisfied. In this work, we propose
a scheme based on a combination of parameter estimation,
RL, and model-based control to handle faults in a continuous
control environment. We empirically demonstrate our approach
on a complex octocopter trajectory-tracking task subject to
single and multi motor faults. We show improved performance
compared with nominal hierarchical PID control for large mag-
nitude faults. Lastly, we demonstrate our approach’s robustness
against noisy parameter estimation.

I. INTRODUCTION

Faults are defined as deviations of system properties or
parameters that prevent the system from efficiently operating.
Failures, on the other hand, represent a more drastic con-
dition that completely prevents a system from functioning.
Fault Tolerant Control (FTC) methods address the problem of
improving system performance when operating in a degraded
manner because of a fault(s). [1].

FTC approaches are broadly classified into active and pas-
sive solutions [2]. Active methods rely on a Fault Detection
and Isolation (FDI) module that informs the controller about
the characteristics of a fault and updates the control law ac-
cordingly. Passive methods involve predefined faults resulting
in less computational complexity as FDI modules; however,
they are constrained by the designers ability to predict fault
instances. In addition, FTC techniques can be classified into
model-based and data-driven methods depending on con-
troller architecture [3]. Model-based controllers are designed
based on physics representations of a system with parameters
estimated from measurement data. In contrast, data-driven
controllers learn directly from system data. As such, model-
based controllers require assumptions about the fundamental
behavior of the system while data-driven controllers only
require a data set that accurately depicts the scenario and its
operating conditions.
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The performance of model-based FTC methods depends
on having accurate and comprehensive first-principle models.
Complex models require enhanced control methods compro-
mising the robustness of the controller. Data-driven FTC
methods allow developing complex control strategies but
they are sample inefficient requiring numerous experiments
to achieve a satisfactory performance. As such, deep rein-
forcement learning (DRL) approaches attempt to minimize
this sample inefficiency and have become very popular for
solving continuous control tasks in the last few years [4].

DRL applications to solve the FTC problem have been
proposed in [5], [6]. For example, Wang et al.[6] presented
a Deterministic Policy Gradient algorithm with an integral
compensator for robust quadrotor control. However, as it
will be shown in this paper, DRL methods for end-to-end
control of systems lose convergence guarantees for FTC
problems. As an alternative, recent works have combined
model-based and DRL for FTC and robust control [7], [8],
[9]. However, none of these works show capability to handle
complex dynamic models nor multiple faults. Additionally,
several model-based tuning methods have been proposed
[10]; however, these methods involve underlying assumptions
about the mechanics of the system and require substantial
time to calculate which is inapplicable for rapidly changing
dynamical systems. Meanwhile, our DRL agent learns from
data which can be trained offline and then used online for fast
acting adaptability. Additionally, since our DRL agent learns
offline, we can leverage the experience from a wide range of
faults compared to sole model-based tuning methods which
must recompute the parameters for each fault after it occurs
in online conditions. Therefore, the main contribution of
this paper is a novel FTC architecture combining parameter
estimation techniques with model-based control and DRL to
solve the FTC problem. We consider an octocopter trajectory-
tracking task subject to single and multiple motor faults with
varying magnitude as a case study. Moreover, we generate
the faults based on modifying the physical parameters of the
system instead of manipulating the signals artificially which
has been explored in the previous referenced literature. Fi-
nally, we make the model fully available so other researchers
can work on the FTC problem for complex systems like
octocopters.

The structure of the paper is the following. In Section
II, the preliminaries of the different methods we use are
explained. In Section III, we present our approach to FTC.
The case study and fault scenarios considered are detailed



in Section IV. The experiments and results are presented in
Section V, and finally, conclusions and directions for future
works are given in Section VI.

II. PRELIMINARIES

A. Reinforcement Learning

Reinforcement learning (RL) aims to solve an optimal
control problem through neural network-based methods. The
control law is refined through the continuous interactions
of a learning agent with an environment [11]. The control
problem is formalized through the following definition,

Definition 1 (Markov Decision Process): A Markov deci-
sion process is defined by a four tuple: M = {S ,A,T ,R},
where S represents the set of possible states in the envi-
ronment. The transition function T : S × A × S → [0, 1]
defines the probability of reaching state s′ at t+1 given that
action a ∈ A was chosen in state s ∈ S at decision epoch t,
T = p(s′|s, a) = Pr{st+1 = s′|st = s, at = a}. The reward
function R : S × A → < estimates the immediate reward
R ∼ r(s, a) obtained from choosing action a in state s.
The objective of the agent is to find an optimal policy π∗

that maximizes the following criteria ∀s ∈ S :

V π
∗
(s) = max

π∈Π
E

[ ∞∑
t=0

γtR(st, at)|s0 = s, at = π(s)

]
,

(1)
where V π : S → R is called value function and it is defined
as

V π(s) = E

[ ∞∑
t=0

γtR(st, at)|s0 = s

]
, ∀s ∈ S , (2)

where 0 < γ ≤ 1 is called the discount factor, and it
determines the weight assigned to future rewards. The agent’s
objective is to find the policy that maximizes the expected
sum of reward. Obtaining a policy with optimality guarantees
requires the following two conditions to be satisfied

1) |R ∼ r(s, a)| ≤ C <∞,∀a ∈ A, s ∈ S
2) T and R do not change over time.

Systems subjects to faults undergo changes that cause their
dynamic model, represented by the transition function T , to
change over time [4]. Therefore, learning direct control with
DRL for fault tolerance is not theoretically feasible. Given
this, we propose a fault adaptive control scheme that avoids
using DRL for direct control, but combines model based and
DRL in the next section.

B. Proximal Policy Optimization

Proximal Policy Optimization (PPO) is a reinforcement
learning algorithm based on the Natural Policy Gradient
method [12]. PPO learns a policy π(s) using a neural network
whose input is the state vector and the output is the mean µ
and standard deviation σ of the best possible action in that
state. A second neural network, called the value network,
keeps track of the values associated with the states under this
policy. This is subsequently used to estimate the advantage

of a certain action compared to alternatives in that state. This
network is trained using the Temporal Difference (TD) error
[11]. PPO has demonstrated outstanding performance com-
pared to other gradient-based policy learning algorithms for a
number of complex stochastic environment benchmarks, such
as those provided in the Mujoco platform [13]. Moreover,
PPO guarantees monotone improvement of the policy over
multiple learning iterations and as such, we select PPO as
our DRL algorithm.

III. PROPOSED APPROACH

We propose the combination of model-based control
schemes with DRL as a solution to the FTC problem
presented in Figure 1. Model-based control methods like
Proportional Integral Derivative (PID) Controllers remain
dominant in real world industry applications thanks to their
simple structure, ease of implementation, and wide variety of
tuning methods [14]. Nonetheless, traditional tuning methods
for PID control do not account simultaneously for multiple
input-output systems and multiple PID controllers. Carlu-
cho et al. [15] proposed to use DRL for PID parameter
tuning to tackle previously mentioned problems in robotic
tasks. However, adaptation is required for control systems
which undergo faults. We propose to extend the scheme
proposed in [15] to accommodate faults assuming they are
not catastrophic- the system can continue to operate in a
degraded manner and performance can be recovered to some
extent by updating the PID parameters.
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Fig. 1. Fault Adaptive Control framework

The core of the proposed approach relies on the combi-
nation of parameter estimation techniques with DRL. We
propose to update the PID controller when the value of
the parameter(s) associated with faults affect the control
performance. The measurements obtained from the system
y ∈ <m are used to estimate fault-related parameters ρ ∈
<n through widely studied estimation techniques like the
Unscented Kalman Filter and the Particle Filter [16]. The
estimated parameters are then used as inputs to the DRL
agent (s = ρ) and the action of the agent consists in a new set
of parameters for the controller(s) (a = ξ). We demonstrate



the feasibility of the proposed approach in a complex control
task presented in the next section.

IV. CASE STUDY
We consider an octocopter dynamics model based on

Newton-Euler equations of motion for a rigid body [17].
The octocopter’s cascade control scheme is shown in

Figure 2. This control approach allows for stabilization of
the position and orientation of the octocopter with respect to
a trajectory. A set of three PID controllers adjust the vehicle
attitude, and a different set of three PID controllers adjust the
position variables, together forming nested feedback loops.
The reference trajectory is defined in terms of position and
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Fig. 2. Cascade Control scheme for the octocopter

yaw angle [xt, yt, zt, zt, ψt]. The Altitude PID controller
generates the required force in the z direction. The position
PD controllers estimate, based on the current position of
the vehicle and yaw angle, the reference for the pitch (θ)
and roll (φ) angles. The attitude PD controllers generate
the required torque in each direction. The control allocation
block transforms the torques and forces into a reference
voltage for each motor of the octocopter. Finally, each
motor generates angular velocity according to brushless dc
motor dynamics and we cap the input voltage to 11.1V to
represent a realistic motor scenario. [18] More details of the
octocopter modeling and control allocation can be found in
[19]. Additionally, we publicly publish our Open AI Gym
Environment for exploration of the Octorotor dynamics case
study and to encourage future research in this sector of fault
tolerant control - Octorotor Gym Github.

TABLE I
OCTOCOPTER PARAMETERS

Parameter Value
Mass 2

Inertia Coefficient X 0.0429 kgm2

Inertia Coefficient Y 0.0429 kgm2

Inertia Coefficient Z 0.0748 kgm2

Length 1m
Rotor Thrust Constant 8.54858 ∗ 10−6 Ns2/rad2

Drag Constant 1.3678 ∗ 10−7 Nms2/rad2

Nominal Motor Resistance 0.2371 Ω
Electrical Motor constant 0.0107 Vs/rad

Mechanical Motor Constant 0.0107 Nm/A

A. Fault scenarios

Typically, the degradation of the components of the oc-
tocopter increases monotonically from mission to mission.
Motors are susceptible to mechanical degradation in the form

of bearing wear, and electrical degradation in the form of
contact corrosion and insulation deterioration [20]. Instead of
generating faults through the manipulation of control signals
as has been done in previous works, we take a more realistic
simulation approach and generate the faults by modifying the
value of the motor parameters. We consider the following
simplified model for each of the eight motors

ω̇ =
1

Jm
(Keic − Tload −Dfω − Tf ), (3)

ic =
1

Req
(vDC −Keωi), (4)

where Req = 2
3

∑3
j=1Rj is the equivalent electric resistance

of the coils, Ke is the back electromotive force constant, ω
is the angular velocity, Tf is the static friction torque, Df is
the viscous damping coefficient, Jm is the inertia along the z
axis, vDC is the input voltage control signal, ic is the current
demanded, and Tload represents the torque load generated
by the propellers. An increase in winding resistance (Req)
results in the loss of effectiveness of the motor. Therefore,
through the modification of this parameter we generate faulty
behaviors of the octocopter in the trajectory-tracking task. In
this work, we considered single motor faults ranging between
3 and 8 times the nominal value of the resistance as well as
dual motor faults ranging between 2 and 4 times the nominal
value of the resistance. Additionally, we refer to the motors
as labeled in figure 3 for defining the motor’s position in our
experiments.
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Fig. 3. Octocopter motor fault configuration

V. EXPERIMENTS AND RESULTS

A. Experimental design

In this work, we considered training the DRL agent to
learn how to adapt the parameters of PD position con-
trollers. This implies a four-dimensional action space a =
{Kx

p ,K
x
d ,K

y
p ,K

y
d}. Additionally, the state space consists

of the position vector, velocity vector, Euler angles, and

https://github.com/lukebhan/gym-octorotor


their angular velocities s = {x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇}.
The only information received by the agent is the motor
resistance estimated and the reward function is defined by
R = (10−error)/10 where error is the Euclidean distance
calculated between the position of the octocopter and the
reference trajectory. We defined 10 meters as the maximum
deviation allowed from the reference trajectory and we re-
scale the reward between 0-1 as suggested for continuous
control tasks[21]. Other error functions were considered such
as Rt = max(0, 1− ||x− xref ||)−Cθ||θ|| −Cω||ω|| where
x is the position vector, ω is the angular velocity and θ is the
euler angle vector and Cθ and Cω are constants that penalize
the octorotor for spinning. However, we found that this error
function did not perform well as the constants were hard to
tune and the octorotor was not robust to noise.

We considered a change in the reference from (x = 0, y =
0) to (x = 5, y = 5) as the trajectory tracking task for simpli-
fication purposes and assuming that the resulting architecture
will scale well as long as the changes in the reference are
smaller than the one experience during training. Different
fault magnitudes must be experienced by the agent to learn
how to adapt the position controller parameters. However,
we noticed that randomly selecting the fault magnitude for
each episode resulted in no convergence. We thus defined a
curriculum learning approach where we first expose the agent
to the lower bound of the fault magnitude until it converges
and then we generate for each episode with probability of
0.5 a fault with maximum magnitude. In this way, we avoid
the catastrophic forgetting problem for the agent.

We demonstrate the approach on two different experi-
ments. For both experiments, we use PPO as defined pre-
viously with the following parameters:

TABLE II
PPO PARAMETERS

Parameter Value
Optimizer ADAM
Batch Size 64

Discount Factor 0.99
Initial Learning Rate 0.0003

Time Steps of an Episode 2000
Total Number of Episodes 3000

In the first experiment, we explore a single fault on motor
3 as defined in figure 3. We initially begin training the
DRL agent on a 3x fault (3 times the nominal value of
the parameter) and after convergence is reached, we then
introduce a larger 8x where at the beginning of the episode,
a choice of the fault is made between 3x and 8x with
equal probability. We then test our approach by comparing
the trajectory between the nominal PD controller and the
DRL scheme when the DRL controller is given the exact
magnitude of the 8x fault. Furthermore, we then evaluate
the robustness of our controller by introducing variance in
the estimated parameter such that the value given to the
controller is biased. We sample the parameter from a normal
distribution with mean value equal to the true value and a

deviation of 0.5x the nominal resistance.
For our second experiment, we explore a dual motor

fault on motor 5 and 6 as defined in figure 3. However,
our controller is now given two values for the estimated
motor resistances instead of the one above. For training, we
set both motors to an equal 2x fault and allow the DRL
agent to learn until convergence is reached. Then, following
the same method as proposed above, we introduce a large
fault of 4x in both motors such that a choice is made
between the smaller and larger fault at the beginning of
each episode. Following this, we then test our approach
by comparing the trajectory where both motors have a 4x
fault. However, to explore the robustness of our approach,
we then explore setting motor 6 to a 4x fault and allow the
fault of motor 5 to vary. We then introduce variance in the
state estimator of both motors such that parameters fed are
normally distributed with mean equal to the true value and a
standard deviation of 0.5x the nominal resistance. This allows
us to explore the effects of large state estimation errors in
both of our motors. Furthermore, it also allows us to explore
the realistic case of different fault magnitudes on the two
different motors. In this exploration, it’s worth noting that
we are considering multiplicative faults where changes in the
motor dynamics may affect the dynamics of the controllers
and control allocation requirements. This results in a more
complex scenario to handle and showcases the value of using
a DRL agent for online adaptation. Furthermore, it is worth
highlighting that we do not consider additive faults as they
have been widely studied subject [22] and most likely will
not need a DRL-based tuning approach.

B. Single-motor faults

For our single-motor fault experiment, we can see in
figure 4 that our reward function clearly converges by step
1000 and when the larger fault is introduced, we have a
dip in performance, but then converge again by the time
training ends. As such, this demonstrates that our scheme
first minimizes the error with a small fault, and then builds
on it’s initial learning by minimizing the error of both the
small and larger fault. From figures 5 and 6, we can see
that our method outperforms the nominal PD controller in
terms of a 8x fault for a single episode. In the X-direction, it
is clear that our controller does not overshoot and converges
closer to the reference value while the nominal PD controller
significantly overcompensates and contains more error in it’s
convergence. Meanwhile, in the Y-direction, both controllers
perform similarly due to the positioning of the motor fault.
Furthermore, in 7, we can see that while the median error
of smaller faults are outperformed by the nominal PD, when
we move to larger faults, our approach can still accurately
achieve convergence with a significantly lower error when
compared to the nominal PD controller. As such, a parameter
estimator can be used to measure the active states of each
motor and when a large fault is detected, our controller can be
invoked to ensure the stability of the octocopter. Additionally,
figure 7 demonstrates that our controller is robust to large



instability as only a marginal set of outliers ever surpass the
PD controller’s error in 7x, 7.25x, and 8x faults.

Fig. 4. Reward Function for Training the DRL Agent on a Single Motor
3 Fault

Fig. 5. Comparison of X-trajectory Between PD Control and Hybrid
Scheme for 8x Fault on Motor 3

Fig. 6. Comparison of Y-trajectory Between PD Control and Hybrid
Scheme for 8x Fault on Motor 3

C. Multiple-Motor faults

Considering a multi-motor fault carries larger impact on
the octocopter’s performance, we only explore multi-motor
faults up to 4x. Similar to above, we can see in figure
8 that our controller first learns to handle the smaller
dual fault and then struggles initially when the larger fault
is introduced, but ultimately converges to minimize the
larger and small fault errors. As such, in a single episode’s
trajectory, we can see in figure 9 that both the nominal
controller and the reinforcement learning scheme converge
to the correct X position. However, we can see that the
nominal controller performs poorly as it initially becomes
unstable and then overcompensates for the fault while our

Fig. 7. Robustness of Hybrid Scheme for Single Motor 3 Fault. The
robustness is shown over a box-plot where the circles are outliers and the
edges of the box represent the first and third quartiles of the data.

approach accurately compensates to ensure a much faster
convergence. Furthermore, in the Y-direction show by figure
10, we can see that the reinforcement learning approach
slightly overcompensates, but still converges equally fast as
the nominal controller. We can see that the approach shown
is not perfect in the Y-direction, but the improvements in the
X-direction significantly outweigh the marginal overshoot in
the Y-direction. Similar to figure 7, we can also see in 11 that
the hybrid based control outperforms the sole PD controller
at large faults when the PD controller begins to deteriorate
in stability. However, in this case, we set a single motor to
a 4x fault and vary the fault of the second motor. Despite
the variance of the second motor’s fault, we see that the
controller is robust to parameter estimation noise as even
the outliers in the dual motor fault experiment have smaller
error than that of the nominal controller. Additionally, this
demonstrates that our approach is viable for different magni-
tude faults in each motor as figure 11 demonstrates an equal
or better performance then the PD control scheme at almost
every single fault magnitude.

Fig. 8. Reward Function for Training the DRL Agent on a Dual Motor 5
and 6 Faults

VI. CONCLUSIONS
In this paper, we presented a FTC architecture combining

parameter estimation, DRL, and model-based control tech-
niques. We tested the approach with an octocopter consider-
ing a cascade control scheme subject to single and multiple
motor faults with different magnitude. The parameters of the
position controllers in the hierarchical control scheme are up-
dated according to the fault magnitude estimated through the



Fig. 9. Comparison of X-trajectory Between PD Control and Hybrid
Scheme for 4x Faults on Motor’s 5 and 6

Fig. 10. Comparison of Y-trajectory Between PD Control and Hybrid
Scheme for 4x Faults on Motor’s 5 and 6

parameter estimation techniques. We compared our approach
with nominal PID without adaptation and found that the latter
fails when the magnitude of the faults is high for single faults
and moderate for multiple faults. We also demonstrated that
the proposed approach is robust against biased parameter
estimation through Monte Carlo simulations. Future works
will consider extend the presented experiments to faults in
the navigation system and wind conditions.

REFERENCES

[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis
and Fault-Tolerant Control. Springer, 2016.

[2] A. A. Amin and K. M. Hasan, “A review of Fault Tolerant Control
Systems: Advancements and applications,” Measurement, vol. 143,
pp. 58–68, 2019.

[3] J. Macgregor and A. Cinar, “Monitoring , fault diagnosis , fault-
tolerant control and optimization : Data driven methods,” Computers
and Chemical Engineering, vol. 47, pp. 111–120, 2012.

[4] G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges of real-
world reinforcement learning,” CoRR, vol. abs/1904.12901, 2019.

[5] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement
Learning for UAV Attitude Control,” ACM Trans. Cyber-Phys. Syst.,
vol. 3, feb 2019.

[6] Y. Wang, J. Sun, H. He, and C. Sun, “Deterministic Policy Gradient
With Integral Compensator for Robust Quadrotor Control,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. PP,
pp. 1–13, 2019.

[7] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and
K. S. J. Pister, “Low-level control of a quadrotor with deep model-
based reinforcement learning,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4224–4230, 2019.

[8] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting
uavs with reinforcement learning-assisted flight control under cyber-
physical attacks,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 7358–7364, 2020.

Fig. 11. Robustness of Hybrid Scheme for Dual Motor 5 and 6 Faults
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